High Entropy Cantor Alloys (HEAs) modification induced by tungsten alligation, heat treatment and deep cold plastic deformation
##plugins.themes.bootstrap3.article.main##
Abstract
High Entropy Alloys (HEAs) is a unique class of materials that combine particular properties in a large-scale of temperatures, able to guarantee new unexplored materials and alloys with several potentially engineering applications (i.e. space and aerospace industries). As promising structural materials, HEAs consist of five or more principal elements. As a consequence of the monophasic microstructure which usually characterizes HEAs, these alloys offer an excellent combination of strength, strain hardening ability, good plasticity, ductility and fracture toughness especially at cryogenic temperatures better than the existing conventional metals and alloys. For the above reasons, the present work deals with Classic Cantor alloy, a well-known CoCrFeMnNi HEA, where mechanical properties were improved using low cost casting techniques and a combination of different metallurgical methodologies (heat treatment, cold working and adding alloying elements). A promising alloy element, tungsten, was used in the experimentation where mechanical and microstructural characterization were performed using different techniques
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.