Improvement of crack tip position estimation in DIC images by image processing methods
##plugins.themes.bootstrap3.article.main##
Abstract
The study presents and compares an application of two procedures to identify the crack tip location in PVC Sent samples under a uniaxial tensile test based on the image processing method.
An IDS camera captures several photos of the PVC surface as part of the image analysis procedure. All relevant data on crack initiation and propagation is collected and assessed using ImageJ software using image processing methods for detecting cracks. However, the second procedure involves a developed algorithm detecting the discontinuity using digital image correlation (DIC) measurement. Although, because of the experimental conditions, the acquisition of images by the digital camera is never perfect. This noise comes from several sources, including the digital camera, image distortion due to lens magnification or lens angle, the shape and size of the pattern, and electronic noise; ... This article discusses image enhancement methods to overcome these objectionable characteristics using and comparing several filters: Gaussian, median, and Unsharp Mask filters. The performance of the Gaussian filter is better than the Median and Unsharp mask filters. This research demonstrates that DIC is an effective technique for monitoring deformation and understanding the failure mechanism with the best-suited filter.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.