PVC failure modelling through experimental and digital image correlation measurements
##plugins.themes.bootstrap3.article.main##
Abstract
This paper analyses industrial PVC sheets structural integrity assessment widely used for different ranges of industrial applications. We investigated combined approaches focused on fracture toughness assessment to predict PVC mechanical behavior against failure. We ran a series of tests on tensile and single-edge notched samples at various crosshead speeds on a tensile test machine. PVC sheets' stress intensity factors were evaluated using both theoretical and experimental approaches to model crack growth. In the experimental procedure, we used the digital image correlation (DIC) method. We also developed a semi-empirical model to predict crack length over time. Furthermore, we proposed that the crack growth rate and stress intensity factor were satisfactorily correlated at all crosshead speeds and that the crack growth rate could be represented using a power-law model. In pre-cracked PVC specimens, the results showed that crack growth appears to be influenced by crosshead speed.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.