A Simplified ALE model for finite element simulation of ballistic impacts with bullet splash – development and experimental validation
##plugins.themes.bootstrap3.article.main##
Abstract
An original simplified finite element model is proposed to simulate the effects of non-penetrating ballistic impacts causing the so-called bullet splash phenomenon (complete bullet fragmentation), while no fragmentation is caused to the target. The model is based on the Arbitrary Lagrangian Eulerian formulation (ALE) and it simulates the impact as a fluid-structure interaction. The bullet splash phenomenon has been tested by experimental analyses of AISI 304L plates impacted by 9x21 FMJ (full metal jacket) bullets. The model has been developed with the aim of creating a simplified approach to be used in the industry and forensic sciences to simulate the non-penetrating interaction of soft impactors with hard targets. Comparisons between evidence and simulation results lead to the conclusion that the proposed approach can be used in a conservative way to estimate both local and global effects of bullet-splash phenomena.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.