Optimum Sustainable Mix Proportions of High Strength Concrete by Using Taguchi Method
##plugins.themes.bootstrap3.article.main##
Abstract
In this study, mix proportion parameters of high strength concrete (HSC) were analyzed by using the Taguchi’s experiment design methodology for optimal design. For that purpose, mixtures are designed in a L27 orthogonal array with six factors, namely, ‘Silica Fume’, ‘Steel Fiber’, ‘Super-Plasticizer’, ‘Maximum Aggregate Size (AG)’, ‘Water / cementitious material (W/C) ratio’, ‘Fly Ash’. The mixtures were extensively tested to meet technical requirements of HSC. The experimental results were analyzed by using the Taguchi experimental design methodology. The best possible levels for mix proportions were determined for maximization of compressive strength at 7, 28, 56, 90 days, splitting tensile strength at 28 days, flexural strength at 28 days, and the slump. Also the best possible levels for mix proportions were determined for minimization of the production cost. It was found that steel fibers and fly ash are the most dominant factors in the process of optimization. The advantage of using steel fiber and fly ash was the reduced energy and cost associated with the raw materials which meant more sustainable concrete could be attained. It was also found that there is a necessity to apply a multi- response optimization to get the best mix proportions.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.