Investigation of mechanical properties of AlSi3Cr alloy
##plugins.themes.bootstrap3.article.main##
Abstract
In the present paper, microstructural and mechanical properties of an innovative AlSi3Mg alloy were studied. Particularly, the effect of the addition of Cr and Mn on tensile strength and impact toughness was evaluated. In fact, the presence of these elements leads to the formation of an intermetallic phase with a globular or polyhedral morphology. It was therefore investigated the role played by Cr-Mn containing particles in the failure mechanism and the influence of the heat treatment parameters. Moreover, tensile and impact tests were performed on A356 samples in T6 condition, whose results were compared with the performance of the innovative alloy. Considering the static properties, the innovative alloy showed remarkable values of tensile strength, while ductility was improved only after heat treatment optimization. Poor impact toughness values were measured and the microstructural analysis confirmed the presence of coarse intermetallics, acting as crack initiation and propagation particles, on the fracture surfaces.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.