Dynamic debonding in layered structures: a coupled ALE-cohesive approach
##plugins.themes.bootstrap3.article.main##
Abstract
A computational formulation able to simulate crack initiation and growth in layered structural systems is proposed. In order to identify the position of the onset interfacial defects and their dynamic debonding mechanisms, a moving mesh strategy, based on Arbitrary Lagrangian-Eulerian (ALE) approach, is combined with a cohesive interface methodology, in which weak based moving connections are implemented by using a finite element formulation. The numerical formulation has been implemented by means of separate steps, concerned, at first, to identify the correct position of the crack onset and, subsequently, the growth by changing the computational geometry of the interfaces. In order to verify the accuracy and to validate the proposed methodology, comparisons with experimental and numerical results are developed. In particular, results, in terms of location and speed of the debonding front, obtained by the proposed model, are compared with the ones arising from the literature. Moreover, a parametric study in terms of geometrical characteristics of the layered structure are developed. The investigation reveals the impact of the stiffening of the reinforced strip and of adhesive thickness on the dynamic debonding mechanisms.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.