Optimization of S-N curve fitting based on neighborhood rough set reduction with improved firefly algorithm
##plugins.themes.bootstrap3.article.main##
Abstract
S-N curve fatigue samples of titanium alloy welded joints have such a comparatively significant scatter, that results in the issue that the fatigue life prediction accuracy is not optimal. In this work, the titanium alloy welded joints' fatigue data is used as analysis data, and the neighborhood rough set reduction with improved firefly algorithm efficient method of fitting stress-life curves is set forth. The welded joint's fatigue decision system is built with fatigue data. The continuous iteration of the firefly algorithm is used as the search strategy, the neighborhood rough set is adopted to decrease attributes, and the major deciding elements of welded joints' fatigue life is identified. The fatigue characteristic domains are divided based on the neighborhood rough set reduction with improved firefly algorithm's key factor set, and the S-N curves can then be fitted to each domain individually. According to the goodness-of-fit analysis, the proposed approach can improve fatigue life accuracy and reduce sample scattering from fatigue.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.