Computer Vision Algorithm for the detection of fracture cracks in Oil Hardening Non-Shrinking (OHNS) die steel after machining process
##plugins.themes.bootstrap3.article.main##
Abstract
A variant of neural network for processing with images is a convolutional neural network (CNN). This type of neural network receives input from an image and extracts features from the image while also providing learnable parameters to effectively do the classification, detection, and many other tasks. In the present work, U-Net convolutional neural network is implemented on Jupyter platform by using Python programming for fracture surface image segmentation in Oil Hardening Non-Shrinking (OHNS) die steel after the machining process. The results showed that the fracture cracks can be validated by testing with higher accuracy.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.