Elastic and nonlinear crack tip solutions comparison with respect to failure probability
##plugins.themes.bootstrap3.article.main##
Abstract
This study represents a methodology to assess the probability of failure based on three the driving force formulations defined by the corresponding brittle and ductile fracture criteria for compact and bending specimens made of 34XH3MA and S55C steels. The elastic stress intensity factor (SIF) and two types of the non-linear plastic SIFs were considered as the driving force or generalized parameter (GP) to determine the probability of failure assuming a three-parameter Weibull distribution. The elastic SIF were experimentally obtained for studied materials and specimen geometries whereas the plastic SIFs were numerically calculated for the same material properties, specimen configurations and loading conditions according to classical J2 and strain gradient plasticity theories. Different specimen types with varying relative crack lengths and thicknesses were investigated. Proposed the normalized generalized parameter accounting for brittle or ductile fracture can be used as a suitable failure variable that is confirmed by comparison of the obtained failure cumulative distribution functions based on the three studied GPs.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.