Effects of residual stresses on interlaminar radial strength of Glass-Epoxy L-bend composite laminates
##plugins.themes.bootstrap3.article.main##
Abstract
The built-in heterogeneity of the composite laminates has been exploited to tailor the stiffness and strength requirements of modern structures to meet the specific functional demands. However, the non-homogeneity in these composites is the root cause for most of their failures. One of the undesirable consequences of the inherited heterogeneity is the development of cure-induced stresses during composite manufacturing. This work aims to investigate the influence of process-induced stresses on interlaminar radial strength in curved composite laminates. Glass-Epoxy (GE) laminates of two different thicknesses were prepared by hand lamination technique using V-shaped tooling and cured under room temperature. The state of residual stresses in GE laminates is varied by post-curing these laminates at different temperatures. Curved bending strength (CBS) and corresponding interlaminar radial stress for delamination of L-bend laminates were evaluated experimentally using four points bending test. The residual stress profile in each GE laminate is experimentally characterized by employing the Slitting method. The results indicate that the residual stresses have a negligible effect on the critical stress for initial delamination in GE laminates. But, the critical stress for delamination was found to be independent of the laminate thickness and increased with higher curing temperatures. The delaminated surfaces of L-bend laminates were studied using a scanning electronic microscope (SEM). The enhancement in the critical stress due to post-curing can be attributed to the improved fiber-matrix interfacial bonding with higher curing temperature.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.