Reliability assessment of the behavior of reinforced and/or prestressed concrete beams sections in shear failure
##plugins.themes.bootstrap3.article.main##
Abstract
The object of this article is to be able to simulate the behavior of reinforced and/or prestressed concrete beam’s section in the shear loading through a model allowing the evaluation of nonlinear strains caused by shear, while taking into account the real behavior of the materials. In this approach, we are often confronted with problems of modeling uncertainties linked to some insufficiencies of the mechanical model allowing to describe the physical phenomena in a realistic way. For that, it is necessary to use a reliability model making it possible to evaluate their probability of failure, by establishing failure curves according to the different transition zones of the limit state curve of the nonlinear behavior in the shear loading up to at section failure of reinforced and/or prestressed concrete beams. In this work, we also propose a coupling of the reliability method by response surface to carry out the reliability optimization on complex mechanical models, where the mechanical and reliability models developed have been implemented on the Fortran. This allows the estimation in an efficient way of the different reliability characteristics according to each transition zone from the limit state curve to the real behavior until failure in the shear loading.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.