Influence of stress ratio on residual stress evolution near cold-expanded hole due to low-cycle fatigue by crack compliance data
##plugins.themes.bootstrap3.article.main##
Abstract
Modified version of the crack compliance method is used for determination of stress intensity factor (SIF) related to narrow notches emanating from cold-expanded holes. These notches are inserted at different stages of low-cycle fatigue under constant external load. It is shown how residual SIF values, generated by residual stress field influence, can be separated from total experimental SIF values. Residual SIF values, obtained at different stage of low-cycle fatigue with the same stress range Δσ = 350 MPa but different stress R = –0.4 and R = –1.0, provide quantitative description of residual stress evolution near cold-expanded hole. It shown that maximal residual stress relaxation of order 20 per cent occurs at 95 lifetime per cent for both loading programs.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.