Experimental and numerical investigations of the flexural behaviour of Green - Ultra High Performance Fiber Reinforced Concrete beams under repeated loads
##plugins.themes.bootstrap3.article.main##
Abstract
There are various benefits to ultra-high-performance fiber-reinforced concrete (UHPFRC). However, using a lot of cement in this type of concrete has a severe disadvantage since it causes pollution and several environmental concerns. Therefore, another type of concrete that achieves the same superior properties as UHPFRC while using less cement in the mixture should be considered. This research examined replacing cement with fly ash to produce environmentally friendly concrete called Green-UHPFRC. The impact of utilizing G-UHPFRC on the flexural behaviour of thirteen beams was investigated experimentally and numerically under repeated loads. The major parameters of the study were fly ash replacement ratios of 15%, 30%, and 45% and adding steel fiber to mixes with ratios of 1, 2, 3, and 4%. The tested beams were compared to the control beam in their backbone and hysteresis curves, failure load, crack propagation and failure modes, energy dissipation, stiffness degradation, and ductility index. From the results obtained, environmentally friendly concrete (G-UHPFRC) can be produced by replacing cement with fly ash up to 45% and adding 2% steel fiber without affecting the bending performance of beams made of G-UHPFRC compared to those made of UHPFRC.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.