Analysis of the resistance to crack propagation in SENT test specimens printed in ABS using parallel or crossed filaments between layers
##plugins.themes.bootstrap3.article.main##
Abstract
Additive manufacturing techniques continue to develop and cover all industrial fields. However, the performances of aspect and mechanical behavior of the parts obtained by this process remain to be mastered and are still the subject of current research works. Among these performances, the one corresponding to the resistance to the propagation of cracks. In order to improve this very interesting property in various industrial fields, it is desirable to master the understanding of crack propagation in this type of structure obtained by 3D printing. The objective of this paper is to analyze and understand the effect of the adopted raster angle on the crack propagation in SENT specimens obtained by FDM in ABS (Acrylonitrile-Butadiene-Styrene). Two approaches were developed: one is experimental to determine the critical stress intensity factor KIC and the other is numerical to predict the possible paths of crack propagation.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.