The use of frictional and bonded contact models in finite element analysis for internal fixation of tibia fracture
##plugins.themes.bootstrap3.article.main##
Abstract
Tibia is one of the bones that often fracture, generally occurring due to a car accident, falling from high places, work accidents, and sports injuries. Internal fixation is one of the solutions to repair broken bones. In some cases, internal fixation also failed to carry out its function, so the healing process was disturbed and did not run according to the plan. Factors that might interfere with the process can be analyzed using FEM. The objective of this study is to study the effect of the contact model used to model the connection between broken bones of the tibia, to stress distribution that occurs on fixation plate for walking conditions. Analysis was carried out by using ANSYS software with fine-sized tetrahedrons mesh. Two contact models were used. Namely, friction and bonded. The load amount used is based on the average weight of Indonesian Adults, i.e. 63 kg. The results of the analysis show that, for the friction contact model, higher stress is found in the middle area plate, adjacent to the broken location on the bone. Different results are found in the bonded contact model, larger stress occurs in the upper-end area fixation plate.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.