Thermal Effect on Bond Strength of Rubberized Concrete Filled Steel Tubular Sections
##plugins.themes.bootstrap3.article.main##
Abstract
This study aims to assess the effect of high temperature on the bond strength of Concrete Filled Steel Tubular (CFST) sections incorporating crumb rubber particles as partial replacement of fine aggregates in concrete core. High daily temperatures; as in hot countries; was considered as well. Push out tests were conducted on 72 CFST specimens with five different concrete mixes. Prior to these tests, 210 concrete specimens were tested to obtain the mechanical properties of rubberized concrete under high temperature gradients. Some of the tests; on CFST sections or concrete specimens; were tested at the desired high temperature, and some others were tested after cooling down. The main variables considered were the crumb rubber replacement ratio, type of CFST section (circular or square) and temperature gradient. The test results indicated that high temperature reduces the bond strength between steel tube and rubberized concrete core with small percentage of rubber replacement. Recovery in bond strength was observed when the specimens were cooled down. Circular sections showed higher bond strength and ductility on its square counterpart.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.