Improvement of Fatigue Properties of AZ31B Extruded Magnesium Alloy through Forging
##plugins.themes.bootstrap3.article.main##
Abstract
Axial monotonic and load-controlled fatigue tests were performed to investigate the influence of forging at various temperatures and different deformation rates, on both the microstructural and mechanical behaviour of extruded AZ31B magnesium alloy. The obtained microstructural analysis showed that the extruded AZ31B magnesium alloy possesses a bimodal grain structure with strong basal texture. In contrast, once forged, the material showed refined grains and a modified texture. A monotonic yield and ultimate tensile strength of about 223 MPa and 278 MPa were observed for the forged samples showing an increase of 18%, from the as-extruded material. The optimum forging condition was determined to be the coldest of the investigated temperatures, based on the improvement in both monotonic and cyclic properties vs. the as-extruded material. The fractographic analysis of the failure surfaces showed that ductile type fractures occurred in both as-extruded and forged samples. However, more dimples and plastic deformation were identified in the fracture surfaces of the forged specimens. A significant improvement of fatigue life was also observed for all of the forged samples, in particular those forged at 400°C and 39 mm/min. Forging improved the fatigue life via a combination of grain refinement and texture modification resulting in improved strength and ductility.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.