A new approach of CMT seam welding deformation forecasting based on GA-BPNN
##plugins.themes.bootstrap3.article.main##
Abstract
Welding deformation affects the quality of the welded parts. In this paper, by introducing improved back propagation neural network (BPNN), a cold metal transfer (CMT) welding deformation prediction model for aluminum-steel hybrid sheets is established. Before applying BPNN, important parameters affecting welding deformation were obtained by orthogonal test and gray relational grade theory. The accuracy of welding deformation prediction of BPNN is improved by genetic algorithm. The results show that compared with the prediction method based on traditional theory, the deformation prediction model based on GA-BPNN has higher accuracy. Predicted results were applied to the aluminum-steel CMT seam welding in the form of inverse deformation, and the deformation of the welded plate was significantly improved.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.