Numerical simulation of crack propagation behavior of a semi-cylindrical specimen under dynamic loading
##plugins.themes.bootstrap3.article.main##
Abstract
To design and evaluate the analytical crack propagation of a specimen under dynamic load, measurement of dynamic fracture parameters is necessary. However, analytical methods have significant complexity, and experimental methods are also time-consuming that require high precision and considerable funding. Therefore, numerical methods can be used to solve these problems. The Extended Finite Element Method (X-FEM) as a powerful and efficient tool can be used for this purpose. In this paper, X-FEM code in ABAQUS software was used in order to simulate crack growth in a semi-circular specimen with pre-existed crack and also intact specimen to determine dynamic stress intensity factor (DSIF) using displacement extrapolation method. To verify the numerical modeling output, the curve of crack surface opening displacement (CSOD) in X-FEM model has been compared with the experimental curve. Moreover, concrete damage plastic (CDP) model was used to validate X-FEM simulation results. The results show that the DSIF for a cracked sample under a maximum dynamic load 3000 N is equal to 0.5 Mpa . Comparison between the CDP and X-FEM results showed that in both approaches, the same area for crack propagation was also determined.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.