On fatigue behaviour of two spring steels. Part II: Mathematical models
##plugins.themes.bootstrap3.article.main##
Abstract
Symmetric fatigue in two spring steels is investigated in three groups of specimens. One of the groups (Steel EN10270-1SH/ DIN 17223C – C 0.82%, Mn 0.76%, Si 0.26%) has experienced rotating-bending fatigue in air, and the other two groups (Steel BS250A53/ DIN 55Si7 – C 0.56%, Mn 0.81%, Si 1.85%), torsion fatigue in-air and corrosion environment. All experiments include testing to fracture, applying acetate-foil replication technique, replica monitoring of short crack surface growth, length measuring of propagating cracks, a, at the corresponding number of fatigue cycles, N. Data obtained from replica monitoring are presented in plots “Crack lengths, a – Cycles, N”, and used for calculating fatigue crack growth rates, da/dN, and graphical presentations “Crack growth rates, da/dN – Crack lengths, a”. A mathematical description of da/dN – a is presented by introducing a parabolic-linear model in different versions for each of the steels. The model versions are verified through comparing the experimental fatigue lifetimes with those calculated by the proposed model version.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.