Multiple and non-planar crack propagation analyses in thin structures using FCPAS
##plugins.themes.bootstrap3.article.main##
Abstract
In this study, multiple and non-planar crack propagation analyses are performed using Fracture and Crack Propagation Analysis System (FCPAS). In an effort to apply and validate FCPAS procedures for multiple and non-planar crack propagation analyses, various problems are solved and the results are compared with data available in the literature. The method makes use of finite elements, specifically three-dimensional enriched elements to compute stress intensity factors (SIFs) without special meshing requirements. A fatigue crack propagation criterion, such as Paris-Erdo?an equation, is also used along with stress intensity factors to conduct the simulation. Finite element models are generated within ANSYS™ software, converted into and solved in FRAC3D program, which employs enriched crack tip elements. Having computed the SIFs for a given crack growth increment and using a growth criterion, the next incremental crack path is predicted and the fracture model is updated to reflect the non-planar crack growth. This procedure is repeated until cracks reach a desired length or when SIFs exceed the fracture toughness of the material. It is shown that FCPAS results are in good agreement with literature data in terms of SIFs, crack paths and crack growth life of the structure. Thus, accuracy and reliability of FCPAS software for multiple and non-planar crack propagation in thin structures is proven.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.