Crack initiation characteristics and fatigue property of a high-strength steel in VHCF regime under different stress ratios
##plugins.themes.bootstrap3.article.main##
Abstract
Crack initiation characteristics and fatigue property of a high-strength steel in very-high-cycle fatigue (VHCF) regime under different stress ratios were investigated in this paper. Fatigue tests were performed at stress ratios of -1, -0.5, 0.1 and 0.3 by using an ultrasonic fatigue testing machine. The difference of S-N data and the characteristics of crack initiation under different stress ratios were examined. It is shown that the magnitude of stress ratio has a substantial effect on the fatigue strength that decreases with the increase of stress ratio. However, the variation tendency of the S-N data from low-cycle fatigue to VHCF regime is similar for the four cases. SEM observations of the fracture surface indicate that fatigue crack initiates from the surface of specimen in low-cycle regime and initiates mostly from the inclusion in the interior of specimen in high-cycle and VHCF regimes, which is irrespective of the state of stress ratio. By means of Focused Ion Beam technique, the samples of crack initiation region were prepared then observed via TEM. The observations show the microscopic morphology of the crack initiation region, showing the different crack initiation characteristics and revealing the mechanism of crack initiation for different stress ratios. Moreover, the effect of inclusion size on fatigue life is discussed with the results showing that the effect of stress ratio and inclusion size on fatigue strength is well described by our proposed formula.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.