Load bearing capacity of thin-walled rectangular and I-shaped steel sections of short both empty and concrete-filled columns
##plugins.themes.bootstrap3.article.main##
Abstract
In this experimental work, strength results obtained on short columns subjected to concentric loads are presented. The specimens used in the tests have made of cold-rolled, thin-walled steel. Twenty short columns of the same cross-section area and wall thickness have been tested as follows: 8 empty and 12 filled with ordinary concrete. In the aim to determine the column section geometry with the highest resistance, three different types of cross-sections have been compared: rectangular, I-shaped unreinforced and, reinforced with 100 mm spaced transversal links. The parameters studied are the specimen height and the cross-sectional steel geometry. The registered experimental results have been compared to the ultimate loads intended by Eurocode 3 for empty columns and by Eurocode 4 for compound columns. These results showed that a concrete-filled composite column had improved strength compared to the empty case. Among the three cross-section types, it has been found that I-section reinforced is the most resistant than the other two sections. Moreover, the load capacity and mode of failure have been influenced by the height of the column. Also, it had noted that the experimental strengths of the tested columns don’t agree well with the EC3 and EC4 results.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.