J. Pokluda T. Vojtek A. Hohenwarter R. Pippan


The paper focuses on the effective resistance and the near-threshold growth mechanisms in the
ferritic-pearlitic and the pure pearlitic steel. The influence of microstructure on the shear-mode fatigue crack
growth is divided here into two factors: the crystal lattice type and the presence of different phases.
Experiments were done on ferritic-pearlitic steel and pearlitic steel using three different specimens, for which
the effective mode II and mode III threshold values were measured and fracture surfaces were reconstructed in
three dimensions using stereophotogrammetry in scanning electron microscope. The ferritic-pearlitic and
pearlitic steels showed a much different behaviour of modes II and III cracks than that of the ARMCO iron.
Both the deflection angle and the mode II threshold were much higher and comparable to the austenitic steel.
Mechanism of shear-mode crack behaviour in the ARMCO iron, titanium and nickel were described by the
model of emission of dislocations from the crack tip under a dominant mode II loading. In other tested
materials the cracks propagated under a dominance of the local mode I. In the ferritic-pearlitic and pearlitic
steels, the reason for such behaviour was the presence of the secondary-phase particles (cementite lamellas),
unlike in the previously austenitic steel, where the fcc structure and the low stacking fault energy were the main
factors. A criterion for mode I deflection from the mode II crack-tip loading, which uses values of the effective
mode I and mode II thresholds, was in agreement with fractographical observations.


  1. Latest Oldest Top Comments


    Download data is not yet available.



    How to Cite

    Pokluda, J., Vojtek, T., Hohenwarter, A., & Pippan, R. (2015). Effects of microstructure and crystallography on crack path and intrinsic resistance to shear-mode fatigue crack growth. Frattura Ed Integrità Strutturale, 9(34). https://doi.org/10.3221/IGF-ESIS.34.15