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Special issue 
 
 
 

entilissimo lettore, 
il presente numero è prevalentemente dedicato alla prestigiosa Scuola Russa di Meccanica della Frattura. 
L’obiettivo del numero è quello di offrire un aggiornamento su alcune delle linee di ricerca seguite in questo 

immenso paese, non tentando nemmeno di essere esaustivi (sarebbe stato necessario un numero certamente ben più 
corposo), ma cercando di offrire degli spunti di riflessione e, magari, dei riferimenti per possibili collaborazioni. 
Il numero è inoltre arricchito da alcuni lavori non legati alla “special issue”. Preferiamo mantenere i quattro appuntamenti 
annuali, conservando la tempistica di pubblicazione dei lavori presentati al di fuori delle special issue (massimo tre mesi dal 
primo invio). Come nel precedente numero di Frattura ed Integrità Strutturale, i lavori appartenenti alla special issue sono 
quindi contraddistinti da una scritta nella prima pagina in alto a destra. 
 
Infine, qualche informazione riguardante il prossimo Convegno IGF XXII (Roma 1-3 luglio 2013). Il convegno si terrà 
presso la Facoltà di Ingegneria dell’Università di Roma “Sapienza”, nell’Aula del Chiostro (via Eudossiana 18). Al fine di 
agevolare il processo di indicizzazione, la lingua preferenziale degli atti è l’inglese. Sono comunque accettati anche lavori in 
italiano, ma con abstract lungo in inglese (almeno 800 parole). Nel sito IGF sono disponibili i template per la preparazione 
degli atti.  
Le prossime scadenze sono: 
- 10.04.2013: invio Abstract 
- 15.04.2013: accettazione Abstract 
- 31.05.2013: invio memorie 
 
 
           

Francesco Iacoviello 
         Presidente IGF  

Direttore Frattura ed Integrità Strutturale 
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Preface 

 
 

t gives me a great pleasure to present a special issue of Fracture and Structural Integrity devoted to research 
carried out in the Russian Federation. The history of mechanics and material science has a long tradition in 
Russia. Mechanics was initiated in 1736 with the work Mechanica sive motus scientia analytice exposita by 

Leonhard Euler, who worked at that time in the St. Petersburg Academy of Sciences. In the 19th century, the 
development of mechanics in Russia was associated with the names of Gabriel Lamé, Benoit Clapeyron, and 
Mikhail Ostrogradskii, who were appointed professors at the Institute of the Corps of Railroad Engineers in St. 
Petersburg. The foundations of modern fracture mechanics were laid down by the prominent Russian/Soviet 
physicist Abram Fedorovich Ioffe. In 1924, Ioffe and Griffiths, two renowned scientists, independently set 
forth the idea of the influence of surface cracks on the overall strength of materials. 
 
The establishment of the National Committee on Theoretical and Applied Mechanics in 1956 gave strong 
impetus to the development of mechanics in Russia. The full member of the USSR Academy of Sciences 
Nikolai Muskhalishvilli was the first chairman of this Committee. At present, the Committee brings together 
people from research and educational organizations and individuals with diverse research interests. One of the 
objectives of the Committee is to expand and develop relations between Russian and foreign scientists. 
 
The Russian National Committee on Theoretical and Applied Mechanics expresses the hope that this Issue will 
be of interest to the Italian scientific community and will provide a stimulus to new personal contacts and to 
Russian - Italian scientific cooperation. The Issue contains the latest results of experimental and theoretical 
studies on deformation and fracture, simulation results, and the results of structural investigation of metals and 
alloys. Some papers review the development of modern concepts of mesomechanics, destruction incubation 
time theory, and new models of crack mechanics. 
 
The Issue is not intended to be an exhaustive overview of all major trends of scientific work in Russia. It 
presents only a small part of studies performed at scientific centers of Moscow, St. Petersburg, Yekaterinburg, 
Perm, Novosibirsk, Nignii Novgorod and Tomsk. The Issue includes the articles written both by young 
scientists and experts in fracture mechanics. 
 
We hope that the contributions selected for this Issue will help readers to gain a deeper insight into various 
aspects of fracture mechanics and structural integrity currently developed in Russia, and we wish them 
profitable reading. 
 
 
 

Irina G. Goryacheva 
Professor, Ph.D, DSc, Academician of RAS 
President of the Russian National Committee in  
Theoretical and Applied Mechanics 
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Special Issue: Russian Fracture Mechanics School 

 
  
Relay-race deformation mechanism during uniaxial  
tension of cylindrical samples of carbon steel:  
using digital image correlation technique 
 
 
T.V. Tretiakova, V.E. Vildeman  
Center of Experimental Mechanics, Perm National Research Polytechnic University, 614990, Komsomolsky av., 29, Perm, 
Russia 
 

 
ABSTRACT. The work deals with experimental study of macro localization of plastic yielding occurrences of 
structural carbon steel, research of singularity of deformation wave processes by complex use of contemporary 
test equipment and high effective digital image correlation method. Evolution of nonuniform axial strain fields 
on surface of cylindrical samples during uniaxial tension was registered, time dependences were drawn, and a 
‘relay-race’ mechanism of material deformation was found out at the stage of yield plateau forming. Strain 
concentration ratio was estimated for several material deformation stages. 
 
KEYWORDS. Digital image correlation; Wave effects; Strain localization; Carbon steel. 
 
 
 
INTRODUCTION 
 

 great number of scientific literature deals with experimental study issues of plastic strain in solid bodies, 
specifically, authors repeatedly point out that plastic strain develops nonuniformly both in space (strain 
localization) and in time (time evolution of localization) [1, 2]. Striking examples of plastic strain localization on 

macroscopic level are Chernov-Lüders Lines, initiation and evolution of necking effect on postcritical deformation stage 
[3, 4], and also waves of localized plastic strain.  
The aim of this research was experimental investigation of regularities of plastic yielding macro localization for structural 
steel, study of singularities of wave deformation processes by complex use of contemporary testing equipment and non-
contact strain measuring facilities. 
 
 
MATERIAL AND TEST PROCEDURE 
 

tructural carbon steel 20 (GOST 1050-88) was chosen as the research subject. Mechanical tests on uniaxial tension 
of solid cylindrical samples (test portion length of 16 mm, sample’s diameter of 9.5 mm) were conducted on Instron 
8850 universal biaxial servo-hydraulic testing system with constant kinematic loading speed of 2%/min. Non-

contact registration and displacement and strain fields review were carried out by three-dimensional Vic-3D digital optical 
system (Fig. 1). Video-system’s software is based on digital image correlation technique (DIC). DIC is a highly effective 
non-contact, computer-vision-based method for measuring displacement and strain fields on specimen’s surface by 
correlating digital images captured during loading or exploitation process [5]. 
The digital optical system can be used for problem solving of deformable solid mechanics: experimental investigation of 
nonuniform strain fields and analysis of failure conditions in bodies with concentrators of different geometry [6, 7], 
research of inelastic material deformation processes in complex strain-stress conditions, study of displacement and strain 
fields evolution during crack initiation, damage accumulation and material failure [8–10], etc. The video-system contains 

A 

S 
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digital monochrome cameras, sample illumination systems, calibration grids, synchronizing hardware for communication 
with the test system, and specialized software which allows programming of video recording (Vic-Snap) and mathematical 
treatment of test data (Vic-3D). In Tab. 1 these parameters are shown. 
 

 
 

Figure 1: The non-contact three-dimensional digital optical system Vic-3D. 
 
 

Hardware 2 digital b/w DCP cameras 
Resolution 4 Mp 
Maximum videotaping speed 15 image/s 
Videotaping speed in current tests 0.2 image/s 

Software 3D digital image correlation (Vic-3D) 
Subset 19 pixels 
Step 4 pixels 
Correlation criteria NSSD 
Tensor type (strain calculation) Lagrangian finite strain tensor 

 

Table 1: Technical parameters of strain field registration. 
 
Correlation of digital images was carried out by NSSD criteria (normalized sum of squared difference), which offers the 
best combination of flexibility and results. 
 

2

2
2

i i
NSSD i i

i

F G
G F

G



   

 

 
         (1) 

 

In the software the Lagrangian finite strain tensor was used for strain field estimation: 
 

 , , , ,

1

2ij i j j i k i k ju u u u             (2) 

 
 
TEST RESULTS 
 

ests on uniaxial tension were carried out on 5 solid cylindrical samples. The tensile test diagram for carbon steel is 
shown in Fig. 2. The load-extension curve includes yield drop (II) and yield plateau (III–V) forming stages, and 
also an extensive post-critical deformation stage (VII–VIII). 

Evolution of nonuniform axial strain fields for marked dots (I–VIII, Fig. 2), calculated by using the Vic-3D system, is 
illustrated in Fig. 3. At the elastoplastic deformation stage at the moment of transition through an upper yield point (point 

T 
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II), initiation and evolution of axial strain wave front (points III–V) was captured lengthwise the sample axis. Plastic strain 
is becoming macro localized during further loading at the material hardening stage (points VI, VII), which causes the 
necking effect in center part of the sample. At point VIII the deformed state of cylindrical samples equals its limit, at 
which macro scale destruction of material occurred. 
 

 
Figure 2: The tensile test diagram for carbon steel. 

 
 

 
 

Figure 3: Evolution of axial strain fields during uniaxial tension of cylindrical sample. 

http://dx.medra.org/10.3221/IGF-ESIS.24.01&auth=true
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Axial strain distributions were drawn to appraise inhomogeneity of the material deformation process on sample surface 
(Fig. 4). Designation of curves (I–VIII) coincides with points on the tensile test diagram (Fig. 2). It is clear that at the 
moment before sample destruction, significant strain localization is observed in the central part and is about 200%yy  , 

while average strain is 32%. The elasto-plastic material deformation stage demands for a more thorough study, specifically 
at the moment of yield drop and yield plateau forming (Fig. 5). 
 

        
 

Figure 4: Axial strain distributions on surface of cylindrical sample. 
 

At the elastic stage deformation of material was happening macro-homogeneously along the full sample length. As was 
mentioned above, the abrupt strain flash appeared (curve III, Fig. 5) at the moment of transition through an upper yield 
point (point II, Fig. 2), and a wave front of axial strain was initiated. The wave front is going from one grip to another 
with the speed of about 12-15 mm/min. Macro loading speed of the sample is 0.32 mm/min. 

 
 

Figure 5: Axial strain distributions at the elasto-plastic deformation stage. 
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On the basis of experimental data time dependences of axial strain were determined for five areas of material, marked on 
the surface of sample test portion (Fig. 6). At the material hardening stage and postcritical stage as well, the center point 
(1) speed of deformation is considerably higher than the other; at the same time, equidistance points (1 and 5, 2 and 4) 
deform with equal speed. 
Time inhomogeneity on elasto-plastic stage has wave-like behavior (Fig. 7). The step-by-step involvement of parts of 
cylindrical samples into the material deformation process is observed (1–5, Fig. 7). Point 1, which is located at the edge of 
the sample test portion, starts first. When it reached   a certain level of axial strain, the material stopped deforming in this 
area. During the deformation process, next point (2) is engaged, and so on. This effect can be named the ‘relay-race 
mechanism’ of deformation, which happens at the stage of yield plateau forming. During further loading at the material 
hardening stage the axial strain level increased at point 3. This fact confirms the occurrence of localization process in the 
center area of solid cylindrical sample test portion. 
 

 
 

Figure 6: Time dependences of axial strain for five areas of material. 
 
 

 
 

Figure 7: Time dependences of axial strain at the stage of yield plateau forming and at the material hardening stage. 
 
 

In turn, the elastic unloading of peripheral specimen parts was registered at the postcritical deformation stage (1, 5). The 
elastic unloading for the first area was about 0.120%, for area 5 it was 0.135%. 
With the aim of quantitative estimation of axial strain concentration, which is caused by localization of plastic yielding in 
material, the following coefficient was considered: 
 

max
yy yyk              (3) 
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where yy  is the average value of axial strain, determined by using the complementary module of video system’s software 

‘virtual extensometer’; max
yy  is the maximum value of axial strain on sample surface. The ‘virtual extensometer’ differs 

from mechanical extensometers generally in that the former is used after the testing procedure, during post processing, 
while the latter is used in real-time mode. With the help of the ‘virtual extensometer’ it is possible to simulate the use of 
several ‘extensometers’ on the same specimen [8]. Tab. 2 given below shows results of estimation of axial strain 
concentration for different material deformation stages (points I–VIII at the tensile test diagram for carbon steel).  
High value of axial strain concentration coefficient is observed at the material softening stage, and also at the moment of 
transition through an upper yield point, which was demonstrated in this paper. 
 

 

Point Load, kN yy , % 
max
yy , % k  

I 13.134 0.086 - 1.0 

II 24.057 0.148 - 1.0 

III 22.504 0.360 2.580 7.2 

IV 22.326 1.013 2.962 2.9 

V 22.389 1.484 2.626 1.8 

VI 28.742 4.503 5.935 1.3 

VII 33.974 14.156 23.105 1.6 

VIII 23.980 32.719 201.978 6.2 
 

Table 2: Estimation of axial strain concentration, which is caused by localization of plastic yielding in material. 
 

 
CONCLUSION 
 

he findings confirm the existence of space-time inhomogeneity in material inelastic deformation process; 
specifically the ‘relay-race mechanism’ of axial strain contribution was discovered and quantitatively  investigated 
at the stage of yield plateau forming on the surface of a cylindrical carbon steel sample. The degree of strain macro 

localization was analyzed under the conditions of initiation and evolution of necking effect during uniaxial tension. 
Though there is significant reduction of cross-section area in the sample center, inhomogeneity of deformation process at 
the post critical stage is commensurable with inhomogeneity initiated by motion of axial strain wave front. Therefore, on 
the basis of these findings we can make a conclusion about the efficiency of digital image correlation technique and the 
noncontact 3-D video system. Issues of exposure of automodel parameters of inelastic deformation processes (loading-
rate effect, loading conditions, shape effect) are not fully determined and require further complex investigation. 
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ABSTRACT. The general regularities of damage healing during the annealing after cold deformation of metal 
materials are presented in this paper. In categories of damage mechanics the kinetic equations of damage healing 
during recovery and recrystallization are formulated. Diagrams of damage healing for some metal alloys are 
presented. The example of use of investigation results  for optimization of industrial technology of pipes 
drawing is presented. 
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INTRODUCTION 
 

ccording to the current conception of metal physics, the fracture of metal materials is not a one-act catastrophic 
phenomenon, but a regular process of appearance and development of defects, which is in mechanics referred to 
as damage accumulation (plastic loosening, damageability, cracking, etc.). Pure brittle damage is possible only in 

metals with a large covalent component in the interatomic bond. The form and shape of defects, as well as the velocity of 
their propagation, depend on metal behaviour and thermomechanical loading conditions; however, the active role of 
plastic deformation is invariant here, and it reveals itself on the macro or micro scale. 
So the technological cold plastic deformation of metal (rolling die-forging, etc.) from the first stages is accompanied by 
microscopic defects of continuity. The development of damage with the accumulation of deformation can result in the 
appearance of macroscopic defects or even the division of the body under deformation into separate parts, i.e. in defective 
products: this is definitely inadmissible. Macroscopic defects can be revealed easily (external by visual observation, internal 
by an introscopy method), but correction is either impossible or requires that the defective bulk of the metal should be 
removed. One of the methods for avoiding macro-damage is multi-stage deformation, with intermediate annealing at the 
end of every stage, which provides metal softening and, above all, the restoration of metal plasticity (i.e. the ability of the 
metal to be deformed without fracture). The amount of deformation in a separate stage is established intuitively, 
proceeding from one's practical experience. To understand the technology of manufacturing cold-deformed products with 
annealing, it is necessary to give a mathematical description (within the above-mentioned model) of how the restoration of 
the reduction of micro-damage proceeds under annealing. 
As distinct from macro-defects, micro-discontinuities are harder to detect under service conditions. Industry lacks the 
means of checking micro-flaws, so, therefore all metal products have micro-flaws which can affect the efficiency of 
machine parts. It has been ascertained hat they influence fatigue life [1]. Therefore it is important to study the mechanisms 
of eliminating (or healing) micro-flaws, i.e. the mechanisms for the restoration of the margin of metal plasticity by heat 
treatment and the ways of making it more efficient. This is the subject matter of the present paper. 
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DAMAGE MODEL 
 

he deformational criteria of damage and the phenomenological theories based on a certain hypothesis of damage 
accumulation are widespread in mechanics [1-8]. In the description of damage under developed plastic conditions, 
the deformational approach is also popular (see, for example, the survey found in [9]). Historically, the problem of 

damage in plastic deformation was initially considered in terms of technological interests on the basis of empiric criteria 
and fracture models. This approach allowed some simple applied problems to be solved, but hampered the study of the 
general rules of metal damage under the complex stress-strain state. In mechanics, the progress in the development of the 
notion of metal damage under plastic deformation is connected with the appearance of kinetic theories of dispersed 
fracture (damage mechanics) [1, 4-12]. 
The process of damage under plastic deformation can be represented in a different way in terms of the damage mechanics 
as  

 

 1 2, , , ......
d

f s s
d

 


                   (1) 
 

where   is a characteristic of metal damage;  S1 and S2 are thermomechanical loading parameters depending on the 
loading conditions. Before loading  = 0 while   = 1 when the fracture happens. Intermediate values of  characterize a 
level of development of micro-defects. 
The kinetic equation Eq.1 was first proposed  by L.M. Kachanov [2, 3] to describe damage in creep, and was later used by 
a number of authors to describe damage under plastic deformation. The most well-known model of metal damage under 
plastic deformation to be used for making practical calculations is the linear model authored by V. L. Kolmogorov [1, 4, 7] 
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where Λf  is metal plasticity defined as limiting (at the instant of fracture) accumulated amount of shear strain Λ in 
deformation under constant stress state characterized by the stress state index k1 and the Lode-Nadai parameter k2: 
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where   = (1+2+3 )/3 is mean normal stress; 1,2,3  are main normal stresses; s  is equivalent stress. 
Note that in the literature there is no consensus on the form of the kinetic equation, and it is generally chosen by authors 
on the basis of hypothetical ideas or published fragments of metal-physic research data. Therefore in this paper we will 
use an adaptive model of damage accumulation [12, 15]. This model has been formulated from the analysis of 
experimental data on changes in metal density under plastic deformation and heat treatment after plastic deformation.  
A general adaptive model of damage was formulated to describe damage accumulation under conditions of the 
experimental stepwise change in the stress-strain state, at a later date model was developed in some others forms. When 
the stress state changes, the rate of damage variation on the adaptation portion is evaluated as follows: 
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where Δk1i is the increment of the stress state index  at i-stepwise of loading; λ = 0…λа is a current amount of shear strain 
on the adaptation portion; λа is the length of the adaptation portion; с1, с2 and с3 are empiric factors. 
When the direction of deformation changes, the rate of damage accumulation decreases, and on the adaptation portion it 
can be determined by the formula 
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where  is the angle characterizing the change in the loading path in Ilyushin’s phase space of deformations, which can be 
taken as a parameter for the quantitative evaluation of deformation non-monotonicity; i-1 is the damage on the portion 
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preceding the i-th change in the direction of deformation; с5, с6 and с7 are empirical coefficients. The linear model and 
adaptive model yield identical results at the simple monotonic deformation.  
 
 
INVESTIGATION TECHNIQUE  
 

o investigate the general regularities of damage healing during the annealing after cold deformation was the 
purpose of this paper. Notice that the restoration of the margin of plasticity in metals alter cold deformation has 
been studied for a number of years, the results being published in [5, 7, 13, 14]. The following technique [13, 14] 

has been developed for solving this problem (Fig. 1).  
 

 
Figure 1: To definition of the damage healing under annealing after deformation 

 
Tests are performed on metal, with plasticity f = f (k1, k2) already known. Test specimens undergo different amounts of 
plastic strain 0, each specimen being deformed to different amounts of damage 0. Therefore, all the specimens undergo 
annealing in accordance with the chosen regime (T is temperature and t is annealing duration). Damage decrease by the 
value  Δ takes place in annealing.  After annealing once again, all the specimens undergo plastic deformation in the same 
direction up to fracture.  Value of Δ for each specimen can be calculated from a facture criterion 
 

0 - Δ + 1 = 1          (6) 
 

where:  
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0 = 23 ln(d0/d1);  2 = 23 ln(d1/df);  d0, d1 and df are the initial diameter, diameter before annealing and diameter after 
fracture of  specimens. 
The stress state index for cylindrical specimens is calculated as [4, 8] 
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where   d

R
   is a Bridgman’s parameter  which characterizes a neck form of specimen. 

 
 
RESULTS AND DISCUSSION 
 

n example of the damage-time history for low-carbon 0.2%C steel at a temperature of 600°C is shown in Fig 2.  
The lower curve  = 0 illustrated that the annealing of the blank to be deformed, for example, of hot-rolled 
metal, can lead to higher plasticity due to the healing of the micro-damage that appears in the hot rolling stage.  

The curves have three distinctive parts: AB is a rapid exponential decrease of damage due to a recovery processes; ВС is a 
considerable deceleration (and even stopping) of healing due to incubation period of the recrystallization; and CD is 
further acceleration of the process due to a recrystallization. 
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Figure 2: Damage healing during annealing (at 6000C) of carbon steel 0.2%C. 

 
A decrease of damage due to a recovery processes can be described by the equation 
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where trv is recovery period, rv is the bottom limit level of healing of the damage due to the recovery. 
 

      
 

Figure 3: Diagrams of damage healing of some metal alloys: titanium alloys containing different amount  of Al and Mn (1 – 0.8%Аl + 
0.8%Мn; 2 – 1.5%Al +1%Мn; 3 – 3.5%Al + 1.5%Мn); 4 - low-alloyed Cr; 5 – Cr + 35%Fe. 

 
A decrease of damage due to a recrystallization processes can be described by the equation 
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where trc is duration of the incubation period, rc is the bottom limit level of healing of the damage due to the 
recrystallization. 
Fig. 3 shows diagrams illustrating the degree of damage healing for some alloys in coordinates (0, Δ). On value of the 
amount of Δ  one can estimate the completeness of the healing of micro-defects appearing in the pre-load stage. (Bear 
in mind, if Δ = 0 the healing is complete, whereas if all the micro defects remain in the metal). Healability is different 
for different alloys. Recrystallization annealing leads to the complete healing of deformation damage if it is less than some 
value ω*. When ω* <  ω0  < ω** there is partial damage healing, and a certain part of deformational defects remains in the 
metal.  The researches executed by SEM technique, showed that at this stage defects are micro pores (Fig. 4a). When ω0  < 
ω** the residual damage increases more intensively,  micro pores coalesce, a pores and micro cracks is formed (Fig.4b).  
Investigations have shown that recrystallization annealing results in the healing of micro-discontinuities of sub-grain size 
(i.e. under 2-5 m) by intensive surface diffusion of vacancies when they are crossed by the moving inter- grain boundary 
of the grain being recrystallized. Values of ω* and ω** is different for different alloys but are usually are in ranges ω* = 
0.2–0.5  and ω** = 0.6-0.8. 
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(a) (b) 
 

Figure 4: Micro pores and crack which was formed of coalescence of micro pores (are shown by arrows). Material is deformed carbon 
steel 0.1%C after  annealing (at 700°C, 1 hour).  Values of the initial damage: a - 0 = 0.32;  b –0=  0.7 (magnification х1000). 
 
Calculation and analysis of damage accumulated in metal allow to optimize technology process of plastic treatment.  One 
of number  of practical examples may be given [16]. At the Pervouralsk Pipe-Making Plant (Russia) pipes of carbon steel 
0.45%C for poles has been produced by cold rolling. Existing equipment did not allow to satisfy the demand for type 
product. To increase a volume of production it was offered to be produce at automated triple drawing line. One of major 
questions stated for engineers  was a question of damage of pipes during drawing because the manufacturing line design 
did not suppose the intermediary  annealing. Theoretical calculations allowed to choose an optimal drawing parameters, 
when the level of residual damage was not dangerous (Fig.5). The experimental investigations of the relative changes of 
density  and then industrial tests of theoretical results show a validity of prediction. 
 

 
Figure 5: Changes of damage  (a) and density  (b) under drawing and annealing of 0.45%C carbon steel pipes. 

 
 
CONCLUSIONS 
 

n this work the equations of damage healing during recovery and recrystallization are in categories of damage 
mechanics are formulated. Diagrams of damage healing for some metal alloys are defined. It is shown that 
recrystallization annealing leads to the complete healing of deformation damage   if it is less than some value ω*. 

When ω* <  ω0  < ω** there is partial damage healing, and a certain part of deformational defects remains in the metal. 
The example of use of investigation results  for optimization of industrial technology of pipes drawing is presented. 
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ABSTRACT. In-service fatigue cracking of turbine disks of EI698 superalloy is discussed based on crack growth 
analyses. In the bolt joint for disks to shaft connecting there is high level of stress-state, which directed to earlier 
in-disks fatigue crack origination in low-cycle-fatigue regime. Fracture surface pattern such as fatigue striations 
were used for their spacing measurement and crack growth duration estimating. Developed disk tests on a 
special bench by the equivalent program to in-service cyclic loads have allowed discovering one-to-one 
correlation between fatigue striation spacing and crack increment in one flight. Number of fatigue striations and 
beach-marks calculations permitted to estimate crack growth period for the different stages of in-service disks 
cracking. Equivalent stress level for in-service cracked disks was calculated and compared with stress-level in-
tested disks under stress equivalent program to in-service operated cyclic loads. Based on this result non-
destructive inspection intervals were discussed and recommended for in-service disks in dependence on number 
of their flights at the moment of developed inspection to exclude in-flight disks fast fracture. 
 
KEYWORDS. Nickel-based superalloy; Crack initiation; Crystallographic facet; Fatigue striations; Crack                 
growth period; Stress equivalent; Non-destructive inspection. 
 
 
 
INTRODUCTION 
 

ircraft structures in-service fatigue cracking can be appeared under wide range of cyclic loads combinations [1-4]. 
Because of difference in structures loading conditions from one flight to another it can be effective to use 
material reaction for describing damage in-time accumulation in each of them [5]. This reaction on the external 

loading can be considered as material property pre-venting crack occurring and growth. Discussed property has not only 
mechanical but physical sense, and in the case of aircraft structure fatigue cracking, when Mode I crack opening is 
dominant, the discussed process can be described, for instance, applicably to durability, based on bifurcation diagram 
[6,7], Fig.1.  
The bifurcation diagram allows describing fatigued metals behavior based on uniform synergetical methodological 
principle applicably to systems which evolution occurs far from the equilibrium position. Stated the synergetics concept 
allows to connect among themselves all experimentally demonstrated data on research of metals fatigue at different scale 
levels and to explain increase and decrease of dispersion of fatigue durability in process of increase of cyclic stress level at 
achievement of critical stress levels. Such manner of metal fatigue behavior consideration is lawful, even if in process of 
evolution metal undergoes only one unstable condition and consequently has only one bifurcation area between two 
boundary conditions when it is not loaded (one border) and when it is completely failed (the second border).  
Because of complicated external cyclic loading and environment deterioration, material re-action there has to be 
considered based on the stress equivalent value   which has difference in dependence on a structure and its stress-state [8].  
In the case of through or semi-elliptically-shaped cracks, which usually takes place on the first stage of structure cracking 
one can see simply equation for principle stresses 1 ,  2 , their ratio 2 1/   , and value of  e  in the form [9]: 
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               2
1 1 2(1 )e A A                                                    (1) 

 

 
Figure 1: The bifurcation (a) diagram of metals fatigue has constructed according to the tension diagram and (b) schema of probability 
of metals cracking variation for the bifurcation area (q2). Bifurcation areas are specified at transitions from nano-(w1-w2) to meso-
(w2-w3), and macro-(w3-w4) scale level of metals fracture.  
 
Parameters A1, A2 depended on the material-type and can be determined in specimen biaxial tests [9].  
Applicably to in-service aircrafts, in the case of Low-Cycle- (LCF) and High-Cycle-Fatigue (HCF), material reaction can be 
discovered after crack occurring when fracture surface will be analyzed in electron microscope [4]. That is why, if there 
were not estimated in-tests parameters of Eq.1, fractographic analyses of cracked aircraft structures can be used for 
estimating e -value because fatigue striations and effK  or eK - equivalent value has unified correlation in term of mate-

rial reaction independently on the in-service unknown external loading condition [4-6].   
Possessing aviation gas-turbine engines (GTE) with higher in-service parameters and reduced weight required heavier 
thermal and mechanical tension of the engine parts, including the turbine disks. Gas-turbine engines of some types have 
the turbine disks designed in such a way (existence of the central hole, arrangement of the fastening holes in the stressed 
part of the hub) that the disk material of nickel-based superalloy EI698 experiences elastic-plastic loading in stress-
concentration zones by the holes. There is clear material biaxial stress-state in areas of crack origination and propagation 
with different  -ratio for different bolt joint stressing from one exemplar of turbine disk to another.   
Besides, the working temperatures are quite moderate in the fastening-hole regions. Hence, creep effects do not 
contribute much here and so the low-cycle fatigue in these regions is mostly responsible for the disks lifetime.  
Under LCF conditions, the crack-growth period occupies most of a material lifetime [4]. Therefore, stronger thermal-and-
mechanical tension of the disk material together with possible material defects introduced in manufacturing and in 
periodic servicing of the engine reasons the damage-tolerance approach to the disk service.  
In service, fatigue cracks were found to grow in Stage-III disks of NK8-2u engine, Tu-154B aircraft; the cracks grew in 
the sites of high stress concentration by the holes used to fasten disks to the engine shaft. Complicated stressed state was 
calculated with finite-element method for those disk sites where linear stressed state was expected to exist according to the 
traditional calculation techniques [10, 11]. Solutions based on the generalized concept of plane-stress state in a series of 
sections neglect tangential stresses and, partly, a three-dimensional stressed state of the disk rim, including its labyrinth-
seal portion. Erroneous estimations of the real stressed state are even more likely when applied to the stress-concentration 
sites by the holes for bolted joints of a turbine disk and shaft. In service, it is by those holes that fatigue cracks arise to 
then propagate towards the hub and shaft. The actual stressed state differed from the calculated one: according to 
calculation, the greatest stress intensity would correspond to the section normal to the plane actual crack growth.  
Stage-III turbine disks of two NK8-2u engines (labeled arbitrarily as P-1 and P-2) broke in service. One of the in-service 
failed turbine disks has shown in Fig. 2. Both disks broke in a similar way during a starting run along the takeoff runway. 
Hence, a reasonable guess was that the same cause brought these similar-stage turbine disks about the failure.  
Moreover, when having the engines serviced after different operation times, numerous fatigue cracks were discovered in 
the bolt-joint holes of the disks. Therefore, disks with different numbers of cracks in the holes were selected after 
different operation times, aimed at the analysis into the trends of the crack initiation and propagation. 
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(a) (b)

Figure 2: (a) General view of the Stage-III turbine disk of a NK8-2u engine; (b) Scheme of the disk cracking sequence. Arrows 
indicate the disk section in that initial fatigue crack propagated.  
 
 
INVESTIGATION PROCEDURE 
 
Material 

t was well-known superalloy EI698 is strengthened primarily by precipitation of a gamma prime phase (γ’), Fig. 3. 
The grain size was measured using the line intercept method on optical micrographs. The distribution of grain size 
has shown that the mean grain size, excluding the presence of annealing twins, is about 38 μm. Large grains on the 

order of two to three times of the average grain size and large grain clusters exist in the microstructure.  
The disk material—EI698 superalloy—was tested using standard test specimens. The latter were made from the disks, 
broken in service, and subjected to shirt-term tensile tests and impact-toughness tests at 20C and to creep-rupture tests at 
750C with 420 MPa applied stress (smooth specimens), 650C, 720 MPa applied stress (smooth specimens) and 650C, 
850 MPa applied stress (notched specimens with a 0.15-mm curvature radius of the notch tip). The specimens were cut 
out of the under-rim part of a disk along a chord direction and out of the hub part.  
At 20C both disks exhibited mechanical properties that satisfied all standard requirements to the new disks. Ultimate 
tension stress, Yield stress and elongation were respectively not less than 1150 MPa, 720 MPa and 19 %. 
The time to fracture shown by the smooth and notched specimens tested for creep-rupture strength appeared well above 
the smallest standard one (not below 50 hours), i.e., was indicative of a quite good high-temperature strength of the disk 
material.  
Metallographic investigation of both investigated disks in area of crack origination has shown material structure in 
accordance with certificate for manufactured turbine disks (see Fig. 3) without any evidence of faults.  
 

 
(a) (b)

Figure 3: Typical microstructure of EI698 with gamma prime phase (’) under (a), (b) different magnification in electron microscope. 
 
Non-destructive inspection data    
In-service, after the failure discovering of two turbine disks, there was performed non-destructive inspection of all 
operated turbine disks. In many cases there were discovered cracks being different in size for different disks. Disks with 
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cracks were removed and some of them used in the present investigation. The disks with cracks that were selected for 
their fracture surfaces investigation and failed disks are described in Tab. 1. 
 
Test procedure 
Two of in-service cracked disks with small cracks were not subjected to crack opening and selected for their testing on the 
special bench-test. It was reproduced in-service acting stress-state with maximum stress level in accordance with 
maximum disks rotation speed in flight. During fatigue tests, in disks crack propagation was registered by the non-
destructive day-penetrate periodical inspections.  
 

№№ Time since new, 
flights/hours 

n1 n2 сi, mm Comments 

1 1329/3097 11 18 0.2–1.05 In-service discovered crack 

2 1335/3658 8 9 1.5 -  “  - 

3 1421/3962 11 8 0.05–1.65 -  “  - 

4 1499/3733 1 8 2.0 -  “  - 

5 1690/5780 11 2 0.6 -  “  - 

6 2049/4688 4 13 0.1–0.5 -  “  - 

7 3121/6609 12 9 1.2 -  “  - 

8 2048/5994 + 
561/2000 bench runs 

8 1 4.0 In-service discovered crack; 
bench tests added 

9 3079/5990 + 36 
programmed runs 

12 12 2.8 -  “  - 

10 2619/6345 - - - Broken in service 

11 2696/5382 - - - Broken in service 
 

Table 1: In-service operation time of NK8-2u engines, numbers n1 of the holes (see schema of the Fig.1) with cracks and n2 of cracks 
in holes and crack size as measured by the hole-surfaces. 
 
In one disks (P-3), it was realized block of 42 cyclic loads, reflecting in-service operated stress range during engine 
working, with constant stress amplitude and R-ratio near 0.4 between two neighbored disks cycling with one cycle at R=0. 
There were reproduced 50 blocks in disks fatigue tests. Maximum of stress level was reproduced for in-flight operated 
engine.  
In another disk (P-4), it was used engine with reproducing for disk in-service loading by the cyclically-equivalent-program 
(CEP). This program used for estimating design service goal for in-service disks [12, 13].        
 
Fractographic analyses 
All selected disks were subjected to fractographic investigation on the scanning electron microscope EVO40 of the Karl 
Zeiss Company. Fracture surface patterns were used to reproduce in-service crack propagation in number of flights based 
on fatigue striations or beach mark number in accordance with developed earlier methodology [4, 6].  
 
 
INVESTIGATION RESULTS    
            
General trends of crack growth revealed by the broken disks  

-1 disk broke in service by cracking in three radial sections arranged at 120 angles to one another (see Fig. 2). 
These sections passed holes through that the disk was bolted to the engine shaft. In P-2 disk these angles were 
150, 120, and 90. Having matched the disk fracture surfaces, we saw the fracture to first initiate in one radial P 
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section of a disk. As the crack propagated, plastic deformation of the disk occurred to cause a 35-mm crack-opening 
displacement, next to which final fracture occurred over the two different radial sections.  
Finding the material to fit assigned mechanical properties indicated that the LCF cracks developed in the discs stressed as 
high as to exceed their working capacity. Therefore, the problem arose to make use of the actual durability with the still 
impossible failure of the disk due to the growth of LCF cracks. In fact, this was the problem of running engines with the 
disks tolerably damaged. We solved successfully this problem owing to the complex investigations that included 
quantitative fractography as a way of estimating the growth period of fatigue cracks.  
We examined visually the fracture surface of the opened cracks to find them initiated in the disk-hub body at the surface 
of one or several fastening holes on the central-hole side. The cracks propagated along the disk radius toward the central 
disk hole, Fig. 4. Once a crack grew through, it began to grow toward the disk rim with a danger of disk fracture along its 
radius. The fractures colored golden formed between the fasting holes, used to bolt the disk to the turbine shaft, and the 
central disk hole. The fracture morphology indicated that the crack grew transgranularly, typical of superalloys fatigue 
cracking. Each of the disks had most strongly oxidized zones, arranged closer to the end of the hub. This zone was 
indicative of quite a long propagation period of the initially non-through semi-elliptic crack (see Fig. 4b). 
The web of the disks, broken in service, showed signs of transgranular cracking of a cyclic nature over the region 63 to 65 
mm long between the bolt-joint hole and the rim. These cycles left behind a sequence of fracture zones oxidized to 
different degrees. Elliptic fatigue lines so-called beach marks (BM) bordered these four zones (see Fig. 4c). Similar trends 
were revealed by the fracture surface of Stage-I high-pressure-compressor disk, made of titanium alloy VT3-1, in a D-30 
engine: here zones of different roughness formed in the disk web [12]. A distance between two neighboring zones (each 
identified with BM) of different roughness answered to crack propagation during one flight. So in the above turbine-disk 
case, we considered the whole pattern of crack-propagation from the bolt-joint hole to disk rim as formed during five 
flights, with the last executive start of the engine in that number. 
In both turbine disks, the two remaining fractures were of a mixed type (intergranular plus transgranular) with the signs of 
macroscopic plastic deformation all over the fracture boundaries; such a fracture pattern is typical of superalloys subjected 
to short-term static loading.  
An important finding was that, in both disks, each of the short-term fractures revealed a portion of fatigue cracking, 
which, similar to the general long-term fatigue fracture, began by a bolt-joint hole. It was indicative of a multiple fatigue 
cracking from those holes in both of the in-service failed disks. Those initial portions of fracture were also transgranular 
and oxidized to golden-gray color. Their semi-elliptic boundary with the area of final shirt-term fracture was distinct, 
typical of the case that an abrupt increase of applied load occurred as soon as the general fatigue crack grew to its critical 
size. The general fatigue cracks grew to the dimensions of 2c = 6.5 and 2c = 1.2 mm at the disk hole surface and a = 3.0 
and a=0.3 mm in depth direction for the P-1 and P-2 disks, respectively.  
The crack grew to sequentially form four fracture zones of respectively changed dominating fracture mechanism that was 
indicated by the difference in fracture surface patterns.  
Zone I (see Fig. 4) reveals gradual growth of the crack from the disk hole, predominantly by forming fatigue striations, 
Fig. 5. The striation spacing increases along the minor ellipse axis, toward disk-body depth. The smallest striation spacing 
was 0.5 and 0.3 m for discs P-1 and P-2, respectively. Both values of spacing indicate to low-cycle fatigue conditions of 
the crack initiation, i.e., to a stress level as high as or higher than the yield strength of the material. A special feature is that 
the striation spacing increased linearly with crack growth to achieve 1.2 m by the crack-penetration depth of about 1.2 
mm, where the second fracture zone began in both broken disks. In the open fractures, striation spacing amounted to 0.7 
and 1.2 m for the greatest crack depths of 0.3 and 1.2 mm, respectively. All cracks revealed similar laws of increasing the 
striation spacing to obviously indicate that both disks experienced an about equally high level of stressed state around the 
holes.  
Designing disks in terms of durability takes into account effect of protractedly holding them mechanically loaded when 
starting and shutting down the engine. With such holding under LCF-conditions, thermally activated plastic deformation 
and fracture increase the probability that slowly-going damage of grain boundaries and subboundaries by grain-boundary 
sliding and vacancy fluxes comes to a completion. Consequently, fracture becomes a mixed type (transgranular plus 
intergranular) of predominantly intergranular.  
The fracture surface revealed fatigue striations to confirm that, with a moderate thermal tension of the disks, the 
intergranular mode of fracture was suppressed by the transgranular mode and slip. Transgranular slip brings about 
vigorous cracking of the material and, thereby, hinders from the formation of fatigue striations. Consequently, fatigue 
striations coexist with cracked regions of the fracture surface.  
Zone II of further crack propagation (see Fig. 5) predominantly reveal fracture facets with the steps of intensive 
transgranular slip and hardly visible dimpled regions. Besides, the dimples look quire shallow. Such an abrupt transition to 
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Stage II of crack growth occurs as soon as the fatigue-striation mechanism is suppressed while transgranular slip and 
grain-boundary sliding become dominating. This is evidence that the fast transgranular slip does not bring about 
dominating grain-boundary damage of the material.  
 

 
 

Figure 4: Fracture (general view) in one of the Stage-III turbine discs (NK8-2u engine) has broken in service; (1) and (2) the sequence 
(schematic) of the crack propagation in a disk.  

 

 
 

(a) (b) 
 

 
 

(c) (d) 
 

Figure 5: Fracture morphologies of a in-service fatigued turbine disk (a–c) at the stages of (a) early steady and (b, c) accelerated growth 
of a fatigue crack and (d) by slow in-flight cracking under repeated static loading (see also Fig. 3). 
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If the threshold value of stress-intensity factor (Kmax)h is achieved, holding a material mechanically loaded will change a 
situation at the crack tip as far as the material is sensitive to the loading waveform. Now the plastic zone does not hinder 
the crack growth in the material held under a constant applied load. The crack grows slowly with progressing mixed 
transgranular and intergranular slip (see Figs. 5b, 5c). In so doing, the transgranular slip still dominates, indicating that the 
any serious effect of temperature, known by vigorous formation of grain-boundary voids, does not show itself. 
Transgranular slip develops until the material ductility is exhausted and, consequently, decohesion on the slip plane occurs 
the moment that the fracture surface forms. Such a pattern should be associated with the case of a highly stressed material 
in that transgranular slip occurs easier and, since the material is heated, is not blocked by the grain boundaries. As the slip 
is finished, cleavage on this slip plane occurs.  
The crack propagates from a bolt-joint hole toward the central disk hole in a field of centrifugal forces, which determines 
the level of long-term static loading of the material. As the crack length increases fast by pure-shear under a constant 
applied load, we believe that the crack growth is controlled by a slowly increasing stress-intensity factor. These crack-
propagation conditions, creative of quite extensive Zone II, are overcritical: the crack propagates fast (by tens or hundreds 
microns per one flight). Such a behavior of fatigue crack (propagating from the bolt-joint hole toward the engine shaft) 
conforms to the disk calculations for strength. 
Zone III demonstrates a pattern of mixed transgranular fracture. This followed from transgranular slip and static ductile 
cracking (see Fig. 5d). The visible fracture surface reveals shallow dimples, indicative of low-energy fracture caused by 
static shear. The grain-body strength becomes virtually exhausted due to preceding vigorous transgranular slip. 
Consequently, formation of pores is limited as long as the free surface of fracture forms by decohesion on the slip planes. 
Decohesion appears a dominating way of fracture. Concurrently, local regions experience low-ductility fracture by forming 
degenerated dimples. Such a pattern is representative of transgranular formation and coalescence of pores, typical of a 
material held under a permanently applied load, Fig. 6. During a flight long as tens of minutes, a crack can propagate by 
tens of millimeters. Indeed, Zone-III fractures of the broken disk web reveal five sequentially repeated regions of a 
changed intensity of the fracture oxidation. These regions correspond to the repeated cycles of heating and cooling of the 
engine (having it launched and shat down, respectively). The boundaries between the regions conform to the crack-tip 
profiles the moment that the temperature-and-loading conditions were altered. Each region has extension over 5 mm 
along the crack path.  
 

(a) (b) 
 

Figure 6: The propagation sequence (schematic) of a fatigue crack under (a) increasing or (b) constant applied load with a result that a 
dimpled fracture is formed [15]. 
 
         
Zone IV represents the final-fracture area of the disks. It reveals a dimpled-type fracture adjacent to the grain boundaries 
and characteristic of this alloy when going through short-term fracture under temperature-and-loading conditions reaching 
its fracture toughness.  
Thus, in service, a crack in the disks can pass the propagation Zones III and IV during a small number of flights. The 
crack propagates here by transgranular slip caused by a constant load applied at the maximum revolutions per minute of 
the engine. Therefore, the general crack-growth period, primarily contributing to the disk durability, relates to Zone I of 
the fracture. In Zone I, which extends to 1.0...1.2 mm in depth, steady crack growth occurs according to the fatigue-
striation mechanism. Besides, the value striation spacing greater than 0.3 m corresponds to the low-cycle range of fatigue 
fracture. 
 
The regularities of damage caused by cracks in the disks  
We carefully analyzed the above data on the broken disks to compare them with the crack-growth patterns brought to 
light by disks servicing (see Tab. 1). Therefore, we opened all of the detected cracks and examined them fractographically.  

http://dx.medra.org/10.3221/IGF-ESIS.24.03&auth=true
http://www.gruppofrattura.it


 

A. A. Shanyavskiy, Frattura ed Integrità Strutturale, 24 (2013) 13-25; DOI: 10.3221/IGF-ESIS.24.03                                                                   
 

20 
 

All of these fractures exhibited fatigue striations with the striation spacing not less than 0.34 m by the edge of the hole, 
Fig. 7. The crack-growth rate was noticed to increase along the minor axis a (in-depth of a disk hole). This acceleration 
appeared the smaller the greater operation time to agree with the idea that the periods of a crack initiation and 
propagation change in the same proportion with a stress level and stressed state of the structure element [4]. In all 
examined cases, the value of striation spacing grew linearly long the minor axis of the semi-elliptic crack (see Fig. 7). Such 
a trend is typical of a structure-element behavior in a biaxial stressed state under LCF conditions with a constant strain 
range [16].  
 

 
Figure 7: The changing trend of the value  of fatigue-striation spacing along the crack-growth direction (minor axis a of the crack 
front shape) for the group of examined disks (disk data are given in Tab. 1).  

 
Nos. 3 and 4 disks were close to the broken disks as concerns their operation times, and the opened fractures revealed the 
cracking depths of 1.8 and 2.0 mm, respectively. Deep as 1.2 mm, the value of striation spacing was 1.2 m (close to that 
in the broken disks) and the disks experienced a change of fracture mechanisms: now the facet-type-pattern fracture 
morphology dominated born by transgranular slip. This just was Zone II, revealed by the fracture of the broken disks. In 
all the other examined fractures the crack did not reach its critical depth of 1.3 mm, i.e., transition to Zone II of crack 
growth did not occur.  
 

 
Figure 8: (a) Block of loading waveform (schematic) of a Stage III turbine disk applied when bench-testing an NK8-2u engine and (b, 
c) fatigue-striation blocks, hi, illustrating the fracture response of the disk loaded in the engine.  
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Crack growth in tested disks 
The tests of the disk P-3 were done according to a special routine by imitating blocks of 42 one-flight loading cycles, each 
block ended with a complete cutoff of the engine. The greatest and least numbers of engine revolutions corresponded to 
the end of take-off and reduced-speed regimes, respectively. On the tests, we opened the cracks to examine their growth 
behavior fractographically and have found 42 fatigue striations to be formed by 42 one-flight loading cycles (one test 
block, Fig. 8). The blocks of 42 striations, with the striation spacing nearly the same over a block area, were separated by a 
step (or a line) from one another. Each step formed to mark a complete cutoff of the engine. These findings confirmed 
that, in Zone I of crack growth (within 1.3-mm crack depth), each fatigue striation is indicative of a crack increment 
caused by a start-and-shut-down cycle of the engine, i.e., by a single flight of the aircraft.  
We analyzed the crack-growth trends in the P-4 disk tested by ECP loading in the engine to discover that the disk-fracture 
morphology differed significantly from that peculiar the real in-service conditions. In the tests, the crack in Zone I was 
grown to 8-mm depth, Fig. 9; at this depth, the value of fatigue-striation spacing achieved nearly 2 m. This is significantly 
greater than the critical value typical of changing for Zone II for in-service fractures. And, compared with the latter, 
striation spacing grew significantly faster with the crack depth.  
 

 
Figure 9: Striation spacing value  against the minor axis, a, of semi-elliptically crack appeared in the turbine disk bench-tested by 
equivalent cyclic loading in an NK8-2u engine. 

 
 
DISCUSSION 
 

he number of loading cycles calculated from the number of fatigue striations showed agreement with the in-
service operating time, Tab. 2. A larger operating time gave a greater number of fatigue striations. Hence, 
expecting fatigue striations to form during a start-and-shut-down cycle of the engine, a number of the fatigue 

striations must be characteristic of the growth period of a fatigue crack, measured as the number of flights of an aircraft.  
 

Disk No. 1* 2* 3 4 5* 6* 7 8 

Nf (flights) 1329 1335 1421 1499 1690 2041 2600 3121 

Np, striations 180 620 1000 860 760 710 1500 1360 
 

Table 2: Operating times Nf of the disks since new and a calculated number Np of fatigue striations for the cracks detected in service 
(*In disks-No 1, 2, and 5, 6 cracks did not reach their critical depth). 
 
The data on crack-growth period show significant scatter, which should be related to a difference in stress levels between 
the disk-hole sites. For instance, only one crack was detected in No. 4 disc, its depth, though, as large as 2.0 mm. Yet 
other disks, of different operating time, exhibited four to twelve cracked holes. The holes may differ in the distance from 
the butt-end of the hub to the fracture origin site (1.5 to 13 mm), which also confirms the case of difference in the stress 
level between the disk holes.  
Having analyzed the growth trends of fatigue cracks in the disks made it possible to estimate the stressing extent and, 
based on an acquired relationship between the numbers of fatigue striations and start-and-shut-down cycles of the engine, 
establish the due inspection frequency of the disks. By calculations, the number of fatigue striations was found to never 
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exceed the number of flights of an aircraft and, in some discs, respond to over 50% operating time (assuming one 
striation formed by one start-and-shut-down cycle of the engine (see Tab. 2). 
Validity of using the above-mentioned relationship was evaluated based on the test results obtained for P-3 disk installed 
in an engine (see Fig.8). Having quantitatively estimated the fractographic parameters of fatigue fracture of turbine disks 
bench tested by ECP loading in an engine, we established that a single fatigue striation with a respective crack increment 
formed per each one-flight cycle under the takeoff conditions.  
The stresses applied to the disk during ECP were significantly lower in such a bench test regime than in service. Using the 
fracture-mechanics approach, we compared the stressed states of the disks in the bench tests and in service.  
For the discussed case of semi-elliptic crack a well-known formula of eK  equivalent stress-intensity factor is applicable 
[17]:  
 

   / /e eK a c a               (2) 
 

In Eq.2, Ф(с/а) is the elliptic integral of the secondary type, whose value depends on the ratio (с/а) of semi-elliptic-crack 
axes in any crack-growth direction.  
In our case, term “equivalent” means that fractographic estimation of stresses based on fatigue striations value related to 
material reaction on its complicated stress-state. This reaction is equivalent in stress level with opened propagated crack by 
Mode I.  
The Eq.2 can be applied correctly to the crack starting from a distance of 1 mm or greater from the in-hole surface of the 
disk: at that distance, effect of the surface-stress concentration is negligibly for crack-growth over the length in 1 mm. 
However, the calculated equivalent stress is totally expressive of all the strengthening-and-weakening effects of prominent 
plastic deformation typical of even the very first loading cycle of low-cycle fatigue. We should stress on that the cracks to 
be in-service detected belong to a small kind as concerns a crack length (within 1 mm) and the growth behavior of fatigue-
striation spacing (linearly dependent of the crack length). For such cracks, using the concepts of strain-range or J-integral 
would be of greater accuracy and meaning than the concept of stress because of well-developed plastic deformation.    
Nevertheless, when estimating a relationship between the characteristics of material behavior in service and in bench tests, 
the concept of equivalent stress remains still proper. Indeed, irrelevant to the way of loading, a value of striation spacing 
always corresponds to just a respective unique value of stress-intensity factor, completely determined by a respective 
equivalent stress [4, 6].  
The disk material exhibits maximum stress intensity factor max( )eK = 70 MPa m1/2 at the moment that the growth 

behavior of a fatigue crack changes from steady to unsteady, the value of fatigue-striation spacing being close to 1.2 m. 
One can see that both from the Paris’ curve in term of crack growth rate and fracture morphology of the material. We 
calculated elliptic integrals for the boundaries between Zone-I and Zone-II fractures of the broken P-1 and P-2 disks and 
for the line of 1.2 m striation spacing in one of the opened cracks which were also discovered in P-1 disk; the integrals 
appeared 1.0158, 1.0325, and 1.09, respectively. With the cracks dimensions and the respective above-calculated values 
substituted to Eq.1, we calculated e as 1130, 1320, and 1180 MPa. The calculations could be done owing to fractographic 
examination of those broken disks and artificially opened fatigue crack. Thus estimated equivalent stresses approximate to 
those acquired from the finite-element analysis of a complex stressed state of a disk with the shear stresses taken into 
account [11]. The above stress figures appear to exceed more than twice the stress level commonly acceptable for the 
disks. Accordingly, the disks bolted to the shaft through the holes in this particular way must be of a low expected 
durability.  
We compared how much the disks were loaded in the bench-tests and in service. In so doing, we assumed that the stress-
intensity factors are the same for the same values of fatigue-striation spacing irrespective of the loading prehistory of the 
disks because there were not discovered difference in material properties for all investigated disks. The stress- and strain-
intensity factors were both discussed as representative of a stress pattern whether in bench-tests or service. From a 
comparative analysis, one can have a characteristic indicating how much the disks were stressed relative to one another. 
Hence, we can write,  
 

   0e e t
K K  for  = 1.2 mm         (3) 

or 

        1/2

0 00
/ / / /e e t tt

a a               (4) 
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Here, in Eqs.3 and 4, subscripts “0” and “t” indicate to the cracking conditions in service and bench-tests, respectively.  
In the bench-tested disk, the 1.2 m spacing of fatigue striations corresponded to the crack depth and width of 3.5 and 
8.0 mm, respectively, which was significantly greater than in the in-service disks. For this crack geometry, 1.19 is the value 
of elliptic integral. With the crack-geometry parameters substituted in equation (3), we have  
 

       1/2

0
/ 3.5 /1.2 / 1.016 /1.19 1.46e e t

           (5) 
 

According to our calculations, the bench tests in an engine stress the disk to a level nearly as low as 0.75 of the level 
typical of real service. Assume that the disk durability reduces exponentially with increasing stress level for the exponent 
greater than two. In such a case, using the bench-test data in the durability simulation, we twice as much overestimates the 
expected operating time of the disk in service.  
The above calculations all related to the early fracture zone, in which fatigue striations formed. Moreover, one can see 
from the formation pattern of fatigue striations that the in-service loading of the disk occurred under constant-strain-
amplitude conditions. This was also evident from the finding that unsteady crack growth covered quite a long distance. 
Zones II and III of crack growth occupy significant portions of this area. The above data indicated that the stress level of 
the disk should be substantially reduced.  
To establish the greatest tolerable period of disc service between two sequential inspections (solve the question of 
inspection frequency), we should have estimated the growth period of a crack throughout these two zones. We did such 
an estimation based on the knowledge of the laws of fatigue cracking. In so doing, we assumed that  
 the crack growth accelerated steadily throughout Zone II of the fracture as long as it was controlled by a constant 

strain amplitude (like in Zone I of the fracture) and  
 the distance between two nearest boundaries, separating two regions of different oxidation tints and marking the 

crack-tip positions, corresponds to a crack increment during one flight: indeed, not less than five typical tints changed 
regularly in Zone III of the disk-web fracture. 

Within a distance 20-mm in depth from the hole-bolt-surface (Zone-II), fracture immediately adjacent to the central hole 
(to pass the engine shaft) of the disk. The greatest interboundary distance approximated 1.5 mm for a single-tint region. 
With the above assumptions, crack-growth rate measured within a one-flight 1.2-mm crack path, and a relationship 
obtained earlier [4], the estimation looked as 
 

   3
2 1.5 /1.2 10 / 1 1.5 /18.8 110pN lg x lg   cycles       (6) 

 

Thus calculated a figure indicates that the crack might grow for less than 1000 flights in any of the above fracture zones 
(mind the Tab. 2 data). The crack-growth period may exceed 50% total durability of a part under the low-cycle fatigue 
conditions. Hence, according to the above calculations, we should expect fatigue cracks to appear in many disks that 
passed more than 2000 flights. Besides, quite a number of those cracks should have shown dimensions beyond the steady-
growth limit. To confirm this view, we inspected once all the disks that passed more than 2700 flights. We did it insitu with 
the eddy-current method, the rear bearing of the disk removed.  
Of those disks, 40% turned out to reveal fatigue cracks. The applied method is low sensitive compared with, e.g., a dye-
penetrate one. In addition, accessing into the holes was difficult. Therefore, we could be quite certain that the real portion 
of the discs with service-induced cracks (including small ones) is significantly greater. Based on this once-only inspection, 
a limiting operating time of 2700 flights was introduced into practice.  
Accordingly, the disk design was modified as concerned the way of fastening a disk to the engine shaft. With the new 
design, stress concentration was reduced to result in a nearly thirty-fold increased durability of the disk. The discs that 
passed more than 2700 flights were first to be replaced by the newly designed disks.  
The replacement activity of the old- by new-type discs required time. Hence, the service safety was to be ensured with the 
old-type disks still in service. While the new-type disks were being gradually put in use instead of the old ones, the 
problem was temporarily solved with the damage-tolerance approach applied. In so doing, a recurrent inspection of the disks 
by the eddy-current method was put into practice to examine the area between the hub and web as frequent as  
 after each 50 flights for the operating time not longer than 2000 to 2400 flights;  
 after 20 flights for the operating time of 2400 to 2500 flights;  
 after four (plus two) flights for the operating time of 2500 to 2600 flights; and  
 after two (plus two) flights for the operating time of 2600 to 2700 flights.  
These periodicities were recommended based on the fractographic data and because the desired inspecting area of a disk 
(crosspieces between the holes for a bolt and for the engine shaft) was difficult to access in the discussed structure. With 
the rare disk-bearing structure not moved, the fillet area between the disk hub and web was only accessible for inspecting. 
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In the web, a crack-growth period did not exceed five flights. Yet it achieved 110 flights in the above-mentioned 
crosspieces. Assuming a once overseen crack likely, the above-mentioned inspection frequencies were introduced. 
The recommended inspection sequence was introduced up to the disk-shaft joint has been redesigned. The disk to shaft 
joining was organized by the inner diameter of the discussed disk hub. The reconstructed disk joint to shaft has shown 
airworthiness for aircrafts with this type of engine without fatigue in-service disks cracking in recommended design 
service goal.   
 
  
CONCLUSION 
 
1. In-service turbine disks fatigue cracking of EI437B superalloy in aero-engine NK8-2u of the III stage was considered 
and LCF regime of their failure was demonstrated.  
2. Unified description of fatigue crack growth in metals was applied to stress equivalent e value estimation based on 
fatigue striations measurement in fracture surfaces. It was shown that in-service stress e -level is very high that directed to 
earlier crack origination by the disk hole-surfaces in bolt-joint than it was designed.  
3. Crack growth period for in-service cracked disks was estimated based on fatigue striation spacing measurements. It was 
discovered one-to-one relation between fatigue striation spacing and crack increment in one flight.  
4. Based on crack growth period estimation results, it was recommended in-service non-destructive disks inspection with 
different intervals in dependence of operating time in service at the moment of developed tests.  
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NOMENCLATURE 
 
a          minor semi-axis of elliptical fatigue crack 
c         major semi-axis of elliptical fatigue crack 
da/dN  crack-growth rate in the depth direction 
dc/dN  fatigue-crack-growth rate at the specimen surface 
KI       Mode I stress intensity factor 
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Kmax    maximum Mode I stress intensity factor 
(Kmax)h  threshold value of stress-intensity factor to start of hold-time influencing fatigue cracking   
Ke      equivalent Mode I stress intensity factor 
(Ke)max  maximum value of Ke for steady crack growth 
Keff  effective stress intensity factor in Mode I crack opening 
Nf      lifetime to failure (durability) 
Np      fatigue crack growth period 
qi     range of stress in bifurcation i-area 
R        stress ratio 
        fatigue striation spacing 
 biaxial stress ratio (1/2) 
2   0.2% offset yield strength 
1     tensile stress opening fatigue crack 
2     tensile or compressive stress acting in a direction perpendicular to the 1-direction 
wi   mean stress for bifurcation i-area 
u      Ultimate tensile stress 
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ABSTRACT. A general approach to realization of models of elasticity, plasticity and fracture of heterogeneous 
materials within the framework of particle-based numerical methods is proposed in the paper. It is based on 
building many-body forces of particle interaction, which provide response of particle ensemble correctly 
conforming to the response (including elastic-plastic behavior and fracture) of simulated solids. Implementation 
of proposed approach within particle-based methods is demonstrated by the example of the movable cellular 
automaton (MCA) method, which integrates the possibilities of particle-based discrete element method (DEM) 
and cellular automaton methods. Emergent advantages of the developed approach to formulation of many-
body interaction are discussed. Main of them are its applicability to various realizations of the concept of 
discrete elements and a possibility to realize various rheological models (including elastic-plastic or visco-elastic-
plastic) and models of fracture to study deformation and fracture of solid-phase materials and media. 
Capabilities of particle-based modeling of heterogeneous solids are demonstrated by the problem of simulation 
of deformation and fracture of particle-reinforced metal-ceramic composites. 
 
KEYWORDS. Particle-based approach; Movable cellular automata; Discrete elements; Many-particle interaction; 
Elastic-plastic medium; Fracture; Metal-ceramic composites. 
 
 
 
INTRODUCTION 
 

 modern theoretical approach used for description of heterogeneous solid is based on one of two concepts of 
representations of the medium: continuum or discrete. These concepts were suggested as memorandums to Paris 
Academy of Sciences by Cauchy and Navier, correspondingly, in the early 19th century. Notwithstanding the fact 

that discrete concept reflected discrete structure of matter more correctly at different spatial scales, during the following 
one and the half century the continuum concept prevailed. This was due to the fact that this concept gives the advantage 
of analytical description. It is necessary to note, that most of computational techniques used to model the behavior of 
condensed media is based on the continuum concept. The best known within this class of methods are finite element and 
finite-difference methods [1, 2]. At the present time meshless algorithms for numerical solution of equations of 
continuum (particle-in-cell method [3], SPH [4, 5], SPAM [6, 7]) are widely developed and applied as well. Numerical 
methods belonging to continuum concept has been proven quite efficient in solving problems of deformation of complex 
heterogeneous media of various nature. However, there exists a wide range of problems in which loading of a medium 
involves multiple fracture and slip of fragments, intense mass transfer, including effects of mass mixing, etc. Examples of 
these problems are flow of granular and loose media (powders, sands, soils), compaction of powder mixtures, processes in 
the contact spots of friction pairs, etc. These problems are too difficult to solve by methods of the continuum concept. 

A 
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A promising class of numerical methods that “genetically” fit for simulation of fracture of solids and mass mixing are 
particle-based methods. These methods are widely used to study mechanical or thermomechanical response of solid-phase 
and liquid-phase systems at various scales up to the atomic scale. Note that the term “particle methods” is currently 
understood as a collective term and is referred to quite diverse numerical techniques including methods based on the 
formalism of the discrete concept in mechanics of solids as well as meshless numerical methods of continuum concept. 
Moreover, nowadays some modern realizations of conventional numerical methods (such as particle-finite element 
method [8]) are also referred to as particle methods. The following consideration will concern “conventional” particle 
methods. 
In the framework of “conventional” particle methods simulated material is considered as an ensemble of interacting 
particles (elements) having finite size. Evolution of an ensemble is defined by solution of the system of Newton-Euler 
motion equations: 
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where iR


 and i


 are radius-vector and rotation angle of the particle i; mi and ˆ
iJ  are particle mass and moment of inertia; 

iF


 is the total force applied to the particle i from the surroundings; ij
nF


 and ij
tF


 are forces of normal and tangential 

interaction of considered element i with neighbor j, ijM


 is momentum of force, Ni is a number of neighbors. 

Conventionally only nearest neighbors of particle i are taken into account in (1). It is seen from (1) that “macroscopic” 
(integral) properties of ensemble of particles are defined by the structure and parameters of potential (potential forces) of 
element interaction. 
It should be noted that the particle methods have their origin in the well-known molecular dynamics methods (MDM) [9] 
applied to study of the response of a medium at the atomic scale. At the same time, capabilities of atomic description of 
the behavior of the solid body on spatial and temporal scales that are of interest for engineering applications are severely 
limited. This led to the development of numerical methods for meso- and macroscopic description of a medium (particle 
methods) on the base of MDM. In the framework of these methods structural elements (particles) have finite size and 
hence interaction with the immediate surroundings only is taken into account.  
The best known representative of conventional particle-based methods is the discrete element method (DEM) [10, 11]. Its 
basic foundation was independently proposed by P.A. Cundall (distinct element method [10]) and Greenspan (particle 
modeling [12]) at the end of 1970s. At the present time these two similar methods have been developed into a quantity of 
methods and models, which are referred to collectively as DEM.  
A distinctive feature of DEM in comparison with other particle-based methods is the presence of predefined initial shape 
of elements. Element shape can change (reversible or irreversibly) as a consequence of loading. This feature determined 
preferential development of the formalism of DEM towards correct modeling of flow of loose or weakly bonded porous 
materials [13-17]. In the numerical description of such systems, an adequate accounting of geometric characteristics of 
discrete elements imitating particles of loose medium and peculiarities of contact interaction of elements is of crucial 
importance. In a general case particles of the simulated medium (discrete elements) are considered as super-quadrics [15] 
or polygons [18] rather than as disks or spheres (these shapes are used within the simplest models of loose material). 
Central forces ij

nF


 therewith can generate torque, which is impossible in the interaction of disks or spheres. At the same 
time, far less attention is paid to the analysis of structural form of potential (or potential force) of element interaction in 
loose medium. Indeed, the vast majority of models of interaction between discrete elements is based on the use of 
approximation of pair-wise elastic or elastic-plastic interaction. Such simplification is related, in particular, with the need to 
model long-time evolution of an ensemble of a large number of elements (up to tens millions particles in 3D problems). It 
should be noted that the range of problems that would be correctly solved with use of the approximation of pair-wise 
interaction between elements is limited by description of deconsolidated (including decompacted) materials and media 
with a large enough percentage of free volume (particulate media). In such systems the influence of lateral spread of 
deformed elements can be neglected. Therefore, the main areas of application of models with pair-wise interaction of 
discrete elements of complex shape are the theoretical study of flow (including transportation), mixing, segregation and 
compaction of granular materials in industrial and laboratory plants as well as under natural conditions (modeling of 
landslides and avalanches). 
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At the same time, the success of DEM in description of mechanical processes in consolidated solids (metals, low porous 
ceramic materials and rocks) is less visible. Hereinafter the term “consolidated solid” means low porosity or pore-free 
material retaining its shape under unconfined conditions. The characteristic features of the interaction of discrete 
elements, whose ensemble models consolidated material, are taking into account the resistance of element pairs both to 
compression and tension as well as limitation of the value of shear resistance ( ij

tF ) by adhesion/cohesion strength rather 
than by coefficient of friction. Particular form of discrete elements modeling fragments of consolidated material or 
medium does not play a fundamental role. Conventionally the disk (in 2D problems) or spherical (in 3D problems) form 
of the element is used. At the same time the structural form of normal and tangential potential forces of discrete element 
interaction is of crucial importance for modeling consolidated materials. 
In particular, the use of conventional models of pair-wise potential interaction can lead to a series of artificial 
manifestations (effects) of response of the ensemble of elements that are not inherent to modeled medium. Most 
important of them are:  
 strongly pronounced dependence of macroscopic mechanical properties of ensemble of discrete elements on packing 

type (close, square, stochastic,…); 
 problems in realization of desired ratio between macroscopic elastic moduli (shear and bulk moduli, Young modulus 

and Poisson ratio and so on), especially in case of regular packing; 
 problems in correct simulation of irreversible strain accumulation in ductile materials, whose plasticity is provided by 

mechanisms of crystal lattice scale. 
At present there are several methods of partial solutions of these problems. They are associated with generation of 
stochastic dense packing of nonuniform-sized elements [19], definition of particle interaction constants using lattice 
approximation of continuum [20] and so on. However, the capabilities of these solutions are strongly limited, because they 
do not remove the main limitation of the pair-wise approximation in description of element interaction, namely the 
neglect of the change of discrete element volume under loading. This problem may be solved with use of many-body 
interaction forces.  
At present time different authors develop at least several approaches to description of the response of consolidated solids 
by ensemble of discrete elements with use of many-particle interaction models [20, 21]. However, the ability of these 
models at present is limited to description of elastic-brittle materials. Therefore the present paper is devoted to the 
development of a general approach to building many-body forces of discrete element interaction to simulate deformation 
and fracture of consolidated heterogeneous media with various rheological characteristics. 
The proposed approach is realized within the framework of movable cellular automaton method (MCA) [22-25]. MCA 
method is a hybrid computational technique combining mathematical formalisms and capabilities of DEM [10, 11, 19] and 
conventional concept of cellular automata [26-28]. Originally MCA method was developed to study complex coupled 
processes in solids including deformation and fracture, phase transitions, chemical reactions and so on [22, 29]. In this 
case, to describe the mechanical interaction of elementary structural units (cellular automata) the basic postulates and 
relations of DEM are used. Therefore in modeling “pure” mechanical problems MCA method can be considered as an 
implementation of DEM, which has the following principal difference from other implementations. During the 
construction of the mathematical formalism of MCA method general structural forms of the central and tangential 
potential forces of interaction of movable cellular automata were derived. Central interaction between movable automata 
has many-body form, whereas tangential one has pair-wise form [24].  Thus, the interaction between movable cellular 
automata originally supposed to be many-particle. Note that conventional formalism of discrete elements does not have 
any supposition about the form of interaction potential/force. 
In this paper consideration will be conducted by the example of two-dimensional problem statement, which provides the 
possibility of movement of three-dimensional objects in one plane only. Construction of many-particle interaction in the 
three-dimensional problem formulation is similar. Note also that the following approach and models are applicable not 
only for MCA method, but for a wide range of implementations of discrete element method. Therefore both terms 
(movable cellular automata and discrete elements) will be used in the text. 
 
 
MAIN PARAMETERS OF INTERACTION OF DISCRETE ELEMENTS. 
 

n the framework of proposed approach to modeling consolidated solids the description of the interaction of discrete 
elements (or movable cellular automata) is based on the use of two types of states of a pair of interacting elements. 
They are associated with presence (linked state) and absence (unlinked state) of chemical bond (or I 
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cohesion/adhesion) between elements (Fig. 1). The feature of the central interaction of linked elements is the presence of 
resistance to both compression and tension. At the same time, the interaction of unlinked elements relates to the contact 
type and involves only the resistance to compression. Another difference of element interaction in linked and unlinked 
pairs is the fact that the magnitude of the tangential potential force is limited by the bonding strength in linked state, and 
by the dry friction force for contacting (unlinked) pairs. Thus, the ensemble of linked discrete elements simulates 
consolidated solid. In this case, discontinuities in such solid (damages, cracks, pores and so on) can be modeled by 
specifying unlinked pairs or by removing discrete elements. 
 

 
 

Figure 1: Schematic presentation of switching between linked (at the left) and unlinked (at the right) states of the pair of discrete 
elements i and j. 
 
Switching between the linked and unlinked states of the pair is based on chosen criteria. Specific form of the criteria of 
direct (linkedunlinked) and reverse switch is defined by the nature of the materials modeled by discrete elements. In 
general it can be noted that switching criteria are functions of spatial and force parameters of the mechanical interaction 
between the elements. More details on this aspect of the interaction between discrete elements are discussed in Section 4. 
In framework of the conventional models (1) the mechanical interaction between particles is divided into normal or 
central (along the line connecting the centers of mass of elements) and tangential constituents. Each of these components 
is controlled by the corresponding spatial parameters. 
Normal interaction is determined by the value of element-element overlap hij: 
 

 0 2 2ij ij ij ij i jh r r r d d              (2) 
 

where rij is the current distance between the centers of mass of the elements i and j, 0
ijr  is the original distance (in 

undeformed state), di and dj are the sizes of elements. Linked pair of discrete elements can resists both to compression and 
tension, therefore the value of hij could be positive (tension of the pair) or negative (compression). In general, the discrete 
elements i and j can be characterized by different material properties, so that the contribution of each of them to hij may 
be different. In this regard, the concept of the distance between the center of mass of the element and the central point of 
plane of interaction (or, using the traditional terminology, the contact point) is introduced to the model: 
 

ij ij jir q q             (3) 
 

where qij and qji are the corresponding distances (Fig.2). Initial values of qij and qji are di/2and dj/2 correspondingly. 
 

 
 

Figure 2: Parameters of spatial relation of the pair of discrete elements i and j: distance between mass centers (rij) and distances from 
mass centers of interacting elements to the center of plane of interaction (qij and qji). 

 
For convenience hereinafter spatial parameters of central interaction of discrete elements will be considered in reduced 
units (deformations): 
 

     2 2 2ij ij i j ij ji i jj ii jr d d q q d d              ,     (4) 
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where symbol  hereinafter indicates increment of corresponding parameter during one time step t, ij is central strain of 
the pair i-j, variables i(j) and j(i) are central strains of discrete elements i and j in the pair (in the general case i(j)j(i)). 
Tangential interaction is determined by the relative shear displacement shear

ijl  of the elements in the pair. The value shear
ijl is 

calculated in incremental fashion taking into account the rotation of elements [19, 22]: 
 

tan
shear
ij shear g

ij ij i ij j ji

l
V V q q

t
 


   


,        (5) 

 

where tan g
ijV  is the tangential component of the relative velocity vector ijV


 for the elements i and j ( ij j iV V V 

  
, iV


 

and jV


 are velocity vectors of the centers of mass of the elements), i and j are angular velocities of the elements (in 

considered two-dimensional approximation they actually are signed scalars). Note that the accounting of angular velocities 
in (5) is required for tracking the rotation of the plane of interaction [19, 22].  
As in the case of the central interaction, the contribution of the elements i and j in the shear deformation of the pair i-j can 
be different. By analogy with the central strains (4) the shear angles of the discrete elements i and j in the pair i-j are 
introduced: 
 

   
shear shear
ij ij ij ij ij jij ii jl V t r q q           ,       (6) 

 

where ij is shear angle for the pair i-j, variables i(j) and j(i) are shear angles of discrete elements i and j in the pair (in the 
general case i(j)j(i)). 
Rotation of discrete elements can lead to “bending” of linked interacting pairs (Fig.3). This type of relative motion of 
surfaces of elements i and j is not taken into account by expression (5). Nevertheless such type of relative motion of 
“anchor surfaces” must be accompanied by appearance of special moment of resistance force. So, the special torque gearK


 

directed against pair bending (Fig.3) and having opposite signs for two elements of the pair is introduced: 
 

ijgear gear
ij ji

ji

q
K K

q
 

 
          (7) 

 

Value of the torque gear gear
ij ijK K


 is defined by bending angle gear

ij , which is calculated by analogy with shear
ij : 

 

gear
ij gear

ij ij i ij j jir V q q
t


 


  


         (8) 

 

By analogy with the central (4) and shear (6) strains the bending angles of the discrete elements i and j in the pair i-j are 
introduced: 
 

   
gear gear gear gear

ij ij ij ij jij ii jr V t q q                 (9) 
 

where  
gear

i j  and  
gear
j i  are bending angles of discrete elements i and j in the pair (in the general case    

gear gear
j ii j  ). As 

follows from the definition of torque gear
ijK , bending angles  

gear
i j  and  

gear
j i  have opposite signs (in contrast to shear 

angles), as reflected in the expression (9). 
 

 
Figure 3: An example of bending of the pair of linked elements i and j for the simple case: i = j, qij = qji and tan g

ijV = 0. 
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Note that in the “conventional” models of the interaction of discrete elements do not take into account “bending” of the 
pair of discrete elements. This is perfectly valid in describing the contact interaction of unlinked elements. However, when 
considering linked pairs, accounting of this effect may be crucial.  
It follows from (5), (6) and (9) that strains of elements i and j in the pair i-j differ from each other. The rule of strain 
distribution in the pair is inseparably linked with the expression for element interaction forces and will be discussed in the 
following Section. 
By analogy with strains the forces of central ( ij

nF ) and tangential ( ijF ) interaction of discrete elements i and j will be 
considered in reduced (specific) units: 
 

ij
n ij ij

ij
t ij ij

F S

F S




 
 

           (10) 

 

where ij and ij are normal and shear stresses (specific forces) correspondingly, Sij is an area of the plane of interaction of 
elements (contact area).  
Note that the definition of Sij is different for the description of consolidated and granular materials by ensemble of 
discrete elements. Thus, in the case of granular material the initial value of Sij in the undeformed state ( 0

ijS ) is defined by 

shape of the elements i and j and by their mutual orientation. For example, 0 0ijS   for the elements having a disk (2D 

case) or spherical (3D case) shape. With increase of compression the value of contact area grows up as a function of hij: 

 ij ijS S h , 0ijh  . This kind of dependence is determined by the geometrical characteristics of both elements and their 

mutual orientation. At the same time, under the simulation of consolidated material the parameter 0
ijS  is obviously finite 

and determined by the ratio of sizes of the elements i and j and by features of the local packing of discrete elements in the 
neighborhood of the pair i-j. As a rule, the 0

ijS  is defined to minimize the volume of voids in simulated solid (note that in 

bonded-particle model [19] this is realized through introduction of the special interfacial zone between two bonded 
(linked) elements and by assigning its geometrical characteristics). Peculiarities of the procedure of assigning the initial area 
of plane of element interaction lead to the fact that in most models of consolidated solids a simplified form of discrete 
elements is used (disks or spheres). 
In two-dimensional approximation discrete elements are considered as disks with diameters di in the plane of motion and 
the same value of height h for all of them. Note that in the case of a regular packing of elements with the same size di=d 

the value 0
ijS  is determined by type of packing. For example, for a close packing 0 3ijS dh , for a square package 

0
ijS dh  (Fig.4). 

 

 
(a) (b)

 

Figure 4: Examples of regular packing of elements in 2D problem statement: close packing (a) and square packing (b). 
 

Change of Sij during deformation of the pair of discrete elements i and j is determined by approximations of applied 
model of element interaction. In particular, at small values of pair strain 210ij

  (typical strain range for brittle 

materials) the value of Sij can rely constant ( 0
ij ijS S ).However, at larger pair strains the value of Sij has to be considered as 

a function of the deformation process in the pair i-j. 
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GENERAL FORMALISM OF PROPOSED APPROACH TO BUILDING MANY-PARTICLE INTERACTION OF 

DISCRETE ELEMENTS 
 

uthors propose a general approach to building many-body forces of discrete element interaction to simulate 
deformation and fracture of consolidated heterogeneous materials. The structural form of these forces is 
borrowed from the form of interatomic forces calculated on the basis of embedded-atom method. In the 

framework of embedded-atom model [30] the general expression for potential energy of atom i contains a pair interaction 
potential  as a function of distance rij between atoms i and j and a “density-dependent” embedding function F (here it 
depends on electron charge density i ): 
 

     i ij i
j i i

E R r F 


   ,         (11) 

 

where  i j ij
j i

r 


  is a sum of contributions of neighbors j to local value of density at the location of atom i. 

By analogy with this expression the following general form of notation of the expression for the force iF


 acting on 
discrete element i from surroundings is proposed [23, 31]: 
  

2

2
1

iN
ij ii

i i pair
j

d R
m F F F

dt 


  
   

         (12) 

 

This force is written as a superposition of pair-wise constituents ij
pairF


 depending on spatial position/displacement of 

element i with respect to nearest neighbor j and of volume-dependent constituent iF


 connected with combined influence 

of nearest surroundings of the element. 
When simulating locally isotropic materials/media with various rheologies the volume-dependent contribution iF


 can be 

expressed in terms of pressure Pi in the volume of discrete element i as follows [23]: 
 

1

iN
i

i i ij ij
j

F A P S n


  
 

,          (13) 

where Sij is square of area of interaction (contact) of elements i and j, ijn


 is a unit vector directed along the line between 

mass centres of considered elements, Ai is a material parameter. 
In such a formulation the right part of the expression (12) can be reduced to the sum of forces of interaction in pairs of 
elements and divided into central ( ij

nF


) and tangential ( ij
tF


) constituents: 
 

        , ,
1 1 1

i i iN N N
ij ij ij shear ij ij

i pair i i ij ij pair n ij i i ij ij pair t is ij n t
j j j

F F A P S n F h A P S n F l t F F
  

          
    

,  (14) 

 

where ,
ij
pair nF  and ,

ij
pair tF  are central and tangential components of pair-wise interaction force that depend on the values of 

element-element overlap hij and relative shear displacement shear
ijl , ijt


 is a unit vector which is oriented perpendicular to the 

line joining the centers of mass of elements i and j. In terms of specific interaction forces ij and ij the expression (14) can 
be rewritten in the following form: 
 

 
 

pair
ij ij ij i i

pair
ij ij ij

A P  

  

  



          (15) 

 

where pair
ij  and pair

ij  are specific values of pair-wise components of interaction force. In fact ij and ij have the meaning 

of specific forces of response of the element/automaton i to the impact of the neighbour j. Taking into account the need 
to implement Newton's third law for interacting pairs of discrete elements (ij=ji and ij=ji) the expression (15) has to 
satisfy the following equality: 

A 
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   
   

pair pair
ij ij ij i i ji ji ij j j

pair pair
ij ij ij ji ji ij

A P A P     

     

     


  
       (15) 

 

The equality (15) provides the basis for calculation of contributions of elements i and j (i(j) and j(i), i(j) and j(i)) in the 
total pair strains ij and ij. 
Note that although the right part of the expression (14) formally confirms to notation of element interaction in 
conventional DE models (1) [16,19,32], their fundamental distinction consists in many-body form of central interaction of 
discrete elements in the proposed model. 
It is seen from (14)-(15) that an important problem in building many-particle interaction is definition of local value of 
pressure (Pi) in the volume of discrete element. Authors propose to use an approach to calculation of pressure Pi (or, what 
is the same – of mean stress) in the volume of the element i that is based on the computation of components of average 
stress tensor in the volume of the element [19, 33]. In terms of central ( ij

nF ) and tangential ( ij
tF ) interaction forces the 

component i
  of average stress tensor in the volume of element i can be written as follows [19, 24, 25]: 

 

     
1

1 iN
i

ij ij ij ij ij ij ij
ji

S q n n t   
  



  
  

  ,       (16) 

 

where , = x,y,z (XYZ is a laboratory system of coordinates), i is a current value of the volume of element i,  ijn



 and 

 ijt



 are projections of unit-normal and unit-tangential vectors onto the X-axis of lab coordinates.  

In considered two-dimensional problem statement this expression can be rewritten as follows: 
 

, , , ,
1

, , , ,
1

1
cos cos cos sin

1
cos cos cos sin

i

i

N
i ij ij

ij n ij ij t ij ij
ji

N

ij ij ij ij ij ij ij ij
ji

q F F

q S

    

   

    

     





    

   




,     (16) 

 

where , = x,y (XY is a plane of motion), ij, is an angle between the line connecting mass centres of interacting 
elements i and j and axis  of laboratory system of coordinates (Fig.5), sign «» implies use «+» in case of  = x and use 
«–» in case of  = y. Components i

xz  and i
yz  are identically zero. Definition of i

zz  depends on constitutive equations 

of considered medium. Note that values of i
xy  and i

yx  coincide only in static equilibrium state of ensemble of discrete 

elements, while they can slightly differ at the stage of establishing static equilibrium. Therefore their mean value 

(   2i i
xy yx  ) is used in the proposed model (hereinafter it is called as i

xy ). 

 

 
 

Figure 5: An example of definition of angle ij, between line connecting mass centers of discrete elements in the pair i-j and -axis of 
laboratory system of coordinates (=X is considered here). The center of coordinate system is translated to the mass center of the 
element i. 
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Calculated in this way the stress tensor components can be used to determine the pressure in the volume of discrete 
element: 
 

3

i i i
xx yy zzi

i meanP
  


 

             (17) 
 

Note that calculated values of average stress tensor components can be used to determine other tensor invariants as well, 
for example stress intensity: 
 

           2 2 2 2 2 2

int

1
6

2
i i i i i i i i i i

xx yy yy zz zz xx xy yz xz                    
   (18) 

 

It follows from (1), (14)-(16) that the central problem in the framework of proposed approach to building many-body 
interaction of discrete elements (or movable cellular automata) is to determine expressions for ij and ij, which provide 
necessary rheological characteristics of mechanical response of ensemble of elements. Analysis of relationships (1), (14)-
(16) leads to the conclusion that expressions for interaction forces could be directly reformulated from constitutive 
equations of considered medium (equations of state).  
Below is a derivation of such expressions for locally isotropic elastic-plastic materials. 
 
 
DISCRETE ELEMENT INTERACTION FOR MODELING CONSOLIDATED ELASTIC-PLASTIC MEDIUM 
 
Linearly elastic medium 

tress-strain state of isotropic linearly elastic medium is described on the basis of generalized Hooke's law. The 
following notation of this law will be used in the paper: 
 

22 (1 ) mean
GG K

G

 

 

  

 

   



           (19) 

 

where , = x,y,z;  and  are diagonal components of stress and strain tensors;  and  are off-diagonal 

components;   3mean xx yy zz       is mean stress; K is bulk modulus; G is shear modulus. 

It can be seen that the form and the matter of expressions (19) for diagonal and off-diagonal stress tensor components are 
analogous to expressions (15) describing normal and tangential interaction of discrete elements. This leads to the simple 
idea to write down expressions for force response of automaton i to the impact of the neighbor j by means of direct 
reformulation of Hooke’s law relationships: 
 

   
 

22 1

2

ii
ij i meani j

i

ij i i j

GG K

G

  

 

   

 

        (20) 

 

where Gi and Ki are shear and bulk elastic moduli of material filling the element i, i(j) and i(j) are central strain and shear 
angle of element i in the pair i-j (see Section 2), mean stress i

mean  is calculated using (17).  
It is necessary to note that double shear modulus (2Gi) is used in the second expression of (20) instead of G in (19). This 
feature is concerned with the fact that relative tangential displacement of discrete elements leads to their rotation. Initiated 
rotation of the elements decreases twice the value of relative shear displacement in interacting pairs. So, to match 
“macroscopic” (integral) shear modulus of ensemble of discrete elements simulating consolidated solid with 
corresponding shear modulus G double value of shear modulus (2Gi) is used in the second expression of (20). 
Proposed relationships (20) for forces of element response to the impact of the neighbor j are not arbitrary. It is easy to 
verify that substituting proposed expressions (20) for respond force in (16) automatically provides implementation of the 
Hooke’s law for components of average stress ( i

 ) tensor in the volume of element i. Detail description is presented in 

Appendix A. 
Proposed relationships (20) make it possible to calculate central and tangential interaction of discrete elements, whose 
ensemble simulates isotropic elastic medium. Taking into account the need to implement Newton's third law for 

S 
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interacting pairs of discrete elements (15’) and the need to distribute relative displacement of elements in the pair the 
expressions for specific interaction forces can be written as follows: 
 

 

 

   

2
2 1

2
2 1

2 2

cur pre pre ii
ij ij ij ij i meani j

i

jcur pre pre j
ji ji ji ji j meanj i

j

ji
ij j ii j

G
G

K

G
G

K

ddr

     

     

 

 
          

 
             
    

     (21) 

 

and 
 

   

   

2 2

2 2

cur pre pre cur pre pre
ij ij ij ij i ji ji ji ji j j ii j

ij ji
shear j ii j

G G

ddV t

         

 

             



    

    (22) 

 

Here, relations for calculating the central and tangential interaction forces are written in incremental fashion (in 
hypoelastic form); “cur” and “pre” upper indexes mark values of specific reaction forces at the current step of integrating 
the equations of motion of discrete elements (or cellular automata); mean stress increments i

mean  and j
mean  are taken 

from previous time step or determined with use of predictor-corrector modification of a numerical scheme. Equations 
(21)-(22) are first solved for strain increments  i j ,  j i ,  i j  and  j i . Found values of strain increments are 

then substituted in (21)-(22) to calculate current values of specific forces cur
ij  and cur

ij . 

The above relations have a general (three-dimensional) form. In considered two-dimensional problem statement the 
approximations of plane stress (zz=0) or plane strain (zz=0) state are used. In the model under consideration, this means 
that the average stress tensor components i

xz  and i
yz  are equal to zero. A component i

zz  is calculated as follows: 
 

 
    

, 0

0, 2 2

i i i i
zz i xx yy zz

i i i
zz zz i i i i mean

Plane strain

G K G K Plane stress

    

  

   


    
     (23) 

 

where i is a Poisson ratio. 
Resistance of the pair i-j to bending (Fig.3) is not included in the expressions (21)-(22). So, the form of the dependence 

 gear gear
ij ijK   has to be assigned extra. In the present model this is done by analogy with (22): 

 

   

 

gear
ijgear geari

j ii j
ij

ij ji
j

ij i jgear gear
ij ji ij ij i gear

ji

V tG
GG q q
G

q
K K q S G

q

 



  
    
 


      


        (24) 

 

Testing of the proposed model of element interaction by the example of elastic wave propagation through ensemble of 
linked elements showed that use of shear modulus G as an elastic modulus of resistance to bending in (24) provides the 
best agreement of simulation results with analytical solutions and results of simulation by finite difference method. 
Relations (21)-(24) make it possible to simulate fragments of a locally isotropic linear elastic medium by an ensemble of 
linked discrete elements (or movable cellular automata). 
 
Elastic-plastic medium 
An important advantage of the proposed approach to building many-body interaction of discrete elements is a capability 
to realize various models of elasticity and plasticity within the framework of DEM/MCA. In particular, a model of plastic 
flow (incremental plasticity) with von Mises criterion of plasticity was implemented to simulate deformation of locally 
isotropic elastic-plastic medium. 
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For this purpose, radial return algorithm of Wilkins [2] was adopted to particle-based approach. Conventionally, this 

algorithm is formulated in terms of the stress deviator D̂  (Fig.6): 
ˆ ˆD D M              (25) 

where 
 

ˆ
xx mean yx zx

xy yy mean zy

xz yz zz mean

D

   
   
   


 


 

 

M is a coefficient of stress drop (stress scaling), D̂  is a stress deviator after solution of elastic problem at the current time 

step, D̂  is a scaled stress deviator. 
Being written in terms of stress, for components of average stress tensor in the volume of discrete element i the algorithm 
of Wilkins can be presented in the following form: 
 

   i i i i
mean i meanM        


           (26) 

 

where , = x,y,z;  i



 are scaled (returned) components of average stress tensor; i

  are stress tensor components, 

which result from solution of elastic problem (21)-(23) at the current time step; int
i i

i plM    is current value of the 

coefficient M for discrete element i; i
pl  is current radius of von Mises yield surface for the element i; int

i  is calculated 

with use of expression (18) after solving elastic problem at the current time step;  is the Kronecker delta. 
 

 
 

Figure 6: Schematic representation of functioning of radial return algorithm of Wilkins. Here el is stress intensity after elastic problem 
solution at the current time step, pl is a current value of yield stress (taking into account hardening), y is an “initial” value of yield 
stress. 
 
The main problem in realization of the algorithm of Wilkins within the framework of DEM/MCA is formulation of 
correcting relations for element interaction forces that provide implementation of necessary conditions of the algorithm 
[2]. By analogy with the elastic problem the expressions for scaling specific central and tangential forces of response of the 
element i to the impact of the neighbor j were derived by direct reformulation of relations (26) for average stress: 
 

 i i
ij ij mean i mean

ij ij i

M

M

   

 

    

 

         (27) 

 

where ij   and ij   are scaled values of specific reaction forces. 

As is shown in Appendix B, substitution of (27) in expression (16) for average stress tensor automatically provides 
reduction of its components to yield surface for the element i. This gives possibility to correctly simulate plastic 
deformation in the volume of discrete elements. 
Note that independent use of the expressions (27) for interacting elements i and j can lead to unequal values of respond 
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forces ( ij ji    and ij ji   ) in the pair i-j. In view of the need for implementation of Newton’s third law, the current 

values of element interaction forces in (10) are calculated on the basis of the following proportion: 
 

ij ji ji ij
ij

ij

ij ji ji ij
ij

ij

q q

r

q q

r

 


 


 



   

          (28) 

 

In considered two-dimensional problem statement scaling of specific forces ij and ij and stress i
zz  has peculiarities for 

approximations of plane strain and plane stress state. In the first case these variables are scaled using the expressions (26) 
for i

zz  and (27) for specific forces. In the second case the special iterative procedure proposed by Wilkins [34] is adopted 

to particle-based approach (see Appendix C). 
By analogy with the case of elastic problem, law of scaling of resistance of the pair i-j to bending has to be defined extra. 
In the present model this was done by analogy with scaling of shear resistance force ij: 
 

 
 

     2

gear gear
ij ij i

gear gear
ji ji j

gear gear
ij ji ji ij jigear

ij
ij

K K M

K K M

K q K q q
K

r





  
   
 


        (29) 

 

Rheological properties of material of discrete element i are defined through assigning constitutive relation  int int
i i    

(when applied to movable cellular automaton, it is called as “mechanical response function of automaton/element” [22-
25]). Current value of int

i  could be calculated incrementally using known values of int
i  after solution of elastic problem 

at the considered time step (n+1) and at the end the previous time step n: 
 

        int int1
int int1 3

finali i

i i n n

n n
iG

 
  




          (30) 

 

where  int 1

i

n



 is stress intensity value, which results from solution of elastic problem at the current time step (n+1); 

 int

finali

n
  is stress intensity value at the end of the previous time step n (after realization of stress return procedure if 

necessary). Note, that following the idea of Wilkins’ algorithm the value of  int 1

i

n



 remains unchanged throughout the 

stress return procedure (this is applied both to central and shear strains of discrete elements i and j in the pair i-j). 
 
Calculation of current values of element volume and square of area of interaction of the pair 
In addition to forces ij, and ij, acting on the surface of discrete element i, important constituents of the expression (16) 
for the components of average stress tensor are element volume i and squares of areas of interaction of the element with 
neighbours Sij. The current values of these variables can be found using the average strain tensor components i

  in the 

volume of the discrete element i. The values of components i
 can be found directly in terms of pair strains i(j) and i(j) 

of element (see Appendix A) or through the components of the average stress tensor i
 . In the last case, the specific 

relations between i
  with i

  are determined by considered rheological model of the medium. In the framework of 

above described two-dimensional model of elastic-plastic interaction of discrete elements with von Mises criterion of 
plasticity these relations should be presented in hypoelastic form: 
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Here i
  are stress increments calculated after solving the elastic task at the current time step.  

Calculated values i
  are used to define current volume of the discrete element i: 

 

   0 1 1 1i i i
i i xx yy zz                (32) 

 

where 0
i  is “initial” volume of the element (in undeformed state).  

Determination of current value of Sij is more complicated problem due to possible significant element shape distortion 
under large loads. The following approximation to estimate the value of Sij is suggested. It is based on definition of local 
values of strain tensor components at the area of interaction (contact area) of considered pair of discrete elements i and j 
(hereinafter denote this tensor as ij

 ) by linear interpolation of corresponding components of average strain tensors ( i
  

and j
 ) to the central point of this area: 

 

i j
ji ijij

ij

q q

r
 



 



           (33) 

 

Components of ij
  tensor are transformed from the laboratory system of coordinates to the instantaneous local 

coordinate system XY of the considered pair (Fig.7): ij ij
      . Components ij

x x    and ij
zz  thus defined in local 

coordinate system are used for calculation of the current value of square of the area of pair interaction: 
 

  0 1 1ij ij
ij ij x x zzS S               (34) 

 

Here 0
ijS  is the initial value of square corresponding to the pair of undeformed elements i and j. 

 

 
 

Figure 7: Instantaneous coordinate system XY associated with the current spatial orientation of the pair i-j. 
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Organization of the step of numerical integration of motion equations 
Thus, numerical algorithm realizing the proposed model of elastic-plastic interaction of discrete element (or movable 
cellular automaton) i with neighbours j includes the following main stages: 
i. Calculation of ij, ij and gear

ijK  at the current time step (n+1) in elastic approximation according to Eqs. (21)-(24). 

Calculation of corresponding values of i
xx , i

yy , i
xy , i

zz  or i
zzs , i

mean , int
i  and int

i  with use of expressions (16)-

(18), (23), (30). 
ii. Calculation of current values of i

xx , i
yy , i

xy , i
zz  and int

i  with use of expressions (31). 

iii. Examination of exceeding the yield surface by element i stress state controlling parameter int
i . Calculation of the 

coefficient Mi if necessary. 
iv. Carrying out the procedure of stress returning to yield surface for element i with use of expressions (26)-(27),(29), i.e. 

calculation of ij  , ij   and  gear
ijK


. Calculation of scaled values of average stress tensor components and invariants. 

v. Calculation of forces and torques of element interaction.  
vi. Calculation of new values of automaton volume i and squares of areas of pair interaction Sij with use of expressions 

(32)-(34)  
vii. Integration of Newton-Euler equations of motion of discrete elements (or movable cellular automata). 
The equations of motion (1) of discrete elements are numerically integrated with the use of the explicit integration scheme 
(for example, with use of well-known velocity Verlet algorithm) [35] modified by introducing a predictor cycles for 
estimation of i

  at the current step. The need of the numerical scheme modification is caused by the fact that specific 

forces of the central interaction of discrete elements ij  at the current time step are computed using mean stress i
mean  

(21). At the same time these forces are used to define mean stress according to (16). To solve this problem of numerical 
integration the predictor cycles are used for the calculation of the elastic task. At the initial predictor cycle increment of 

mean stress is calculated from the previous time step:    
1

final finali i i
mean mean meann n

  


   . Value of i
mean  such calculated is 

used in (21) to get estimated values of ij and corresponding estimated value of  
1

predi
mean n




at the current step. The obtained 

value is used for the calculation of    
1

pred finali i i
mean mean meann n

  


    at the next predictor cycle. The number of predictor 

cycles is defined by assigned tolerance of mean stress change during one cycle (normally the solution converges very fast 
and 2 predictor cycles are enough). 
 
 
MODELING FRACTURE AND “HEALING” WITH PARTICLE-BASED FORMALISM 
 

ne of the main advantages of particle-based methods in mechanics is the feasibility of direct simulation of 
fracture (including multiple fracture) of material and bonding of fragments through changing the state of a pair 
of particles (“linked” pair  “unlinked” pair, Fig. 1). The criterion for pair state switching is normally the 

ultimate value of interaction force or the ultimate value of relative displacement [19]. The developed approach to the 
description of interaction of movable cellular automata (or discrete elements) in the many-particle approximation makes it 
possible to apply various multiparametric ”force” fracture criteria (Huber-Mises, Drucker-Prager, etc) as element-element 
bond fracture criteria.  
 
The model to calculate debonding of the pair (linkedunlinked transition) 
It’s well known that crack formation is a fundamentally brittle and extremely localized phenomenon. Fracture is 
connected with rupture of interatomic bonds and spatial diversity of atomic layers. That is realized under the influence of 
local, rather than the average stress. Thus, the used criterion of pair bond breakage between linked elements i and j must 
be expressed in terms of local variables of the interaction of elements, in particular, through the forces ij and ij acting in 
a pair. 
In this regard, the following approach to implement parametric fracture criteria as criteria of pair bond breaking 
(linkedunlinked transition of the state of the pair) is suggested. In the framework of classical formalism of discrete 
elements pair bond breakage occurs on the surface of their interface (at the area of interaction of the pair, in other words, 

O 
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at the contact area). Therefore applied "force" failure criterion (for example, the criterion of Drucker-Prager) must be 
calculated at the area of interaction of elements using the local stress tensor components identified at this area. By analogy 
with strain tensor ij

  (see Section Calculation of current values of element volume and square of area of interaction of the pair) this 

local tensor will be denoted as ij
 . In the local coordinate system XY of the pair i-j (Fig.7) components ij

y y    and ij
x y    

of this stress tensor are numerically equal to specific forces of central (ij) and tangential (ij) interaction of the elements 
(these forces are applied to the contact area Sij): 
 

ij
y y ij
ij
x y ij

 
 

 

 

 
 

           (35a) 

 

Other components ( ij
x x    and ij

z z   ) of the local stress tensor can be determined on the basis of linear interpolation of 

corresponding values for elements i and j ( i
x x    and j

x x   , 
i
z z    and j

z z   ) to the area of interaction: 
 

i j
x x ji x x ijij

x x
ij

i j
zz ji zz ijij
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q q
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q q
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
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          (35b) 

 

where i
     and j

     are components of average stress tensor in the volume of elements i and j in the local coordinate 

system XY of the pair (these stresses result from transformation of average stresses i
  and j

  to local coordinates).  

Components ij
    , thus defined, can be used to calculate necessary invariants of stress tensor which then can be used to 

calculate current value of applied criterion of pair fracture. Below the examples of bond breaking conditions for the pair i-j 
with use of Huber-Mises-Hencky and Drucker-Prager criteria are shown: 
 

   
int

int 0.5 1 1.5 1

ij
c

ij ij
mean ca a

 
  
 
    

        (36) 

 

where c is the corresponding threshold value for considered pair (value characterizing strength of cohesion/adhesion), 

c ta    is a ratio of compressive strength (c) of the pair bond to tensile strength (t), int
ij  and ij

mean  are 

corresponding invariants of stress tensor ij
    . Variables int

ij  and ij
mean  are calculated by analogy with (17)-(18). 

When using the explicit scheme of integration of motion equations (1) the value of time step t is limited above by a 
quantity associated with the time of propagation of the sound through the volume of element: 
 

max
elast

d
t

V
             (37) 

 

where Velast is velocity of the longitudinal elastic wave in the material, 0<<1 – dimensionless coefficient (normally 
=1/51/4). In conventional DEM-based models breakage of bond in pairs of discrete elements is carried out for one 
time step t. It this case the local value of the crack growth rate (defined as the ratio of the linear size of the area of pair 
interaction to t) is higher than sound velocity in the material. Obviously, such a model of bond breakage is an idealized 
because virtually suggests that the spatial separation of atomic layers occurs uniformly over the whole surface of 
interaction of elements. In modern models of fracture mechanics it is supposed that fracture has a discrete character, that 
is, the crack length increases by “quanta”. In different models these quanta of length are called as “fracture quantum” [36, 
37] or “process zone” [38, 39]. Thus, in conventional DEM-based models of fracture it is implicitly assumed that the 
linear dimension of the surface of interaction of elements is equal to the step of crack growth. At the same time, the value 
of “fracture quantum” is a material parameter and its scale normally is nanometers or fractions of nanometer [39, 40]. In 
the most tasks the size of discrete elements is significantly larger than this value. Therefore, in most cases, the model of 
bond breaking in pair of discrete elements within one integration step t means the overestimation of the rate of physical 
process of fracture of the material modeled by the pair of linked discrete elements. 
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In accordance with the foregoing, the following approach to a more accurate description of the dynamics of crack growth 
is suggested. In this approach, it is assumed that breaking of the bond (linkedunlinked transition of the state of the pair) 
is a time-space distributed process. This process is technically expressed through change of the dimensionless coefficient 

ij
linkk  ( 0 1ij

linkk  ). This coefficient has the meaning of the portion of linked part of the contact area Sij. In this case the 

square of linked part of the contact area in the pair i-j is ij ij
link ij linkS S k , while  1ij ij

unlink ij linkS S k   is the square of unlinked 

part of this area. Thus, in this approach, the dynamics of bond breaking in a pair of elements is expressed by the 
dependence  ij

linkk t , where ij
linkk  decreases from initial value 1 (totally linked pair) to final value 0 (totally unlinked pair). 

Depending on the size of the discrete elements and features of the internal structure of fragment of the material, which is 
simulated by the discrete element (in particular, the presence of pores, damages, block structure) the stable or unstable 
crack growing model can be applied to describe the breakage of bond in the pair. 
In the first model, the process of fracture develops in accordance with predefined dependence 

 int int
int

, , ... 0
ij

ij ij ijlink
linkij

dk
f k

d
 


  , where int

ij  is a pair strain intensity (value int
ij  can be calculated, for example, using the 

components of the tensor ij
  defined by analogy with ij

 ). In the simplest case this dependence can be considered as a 

constant: int 0ij ij
linkdk d const   . Note also that the additional conditions for decrease of ij

linkk  (i.e. conditions of crack 
advance through the area of pair interaction) at the current time step are: 
i. Exceeding the fracture criterion threshold at this step.  
ii. int 0ijd  . 

Dependence int
ij ij
linkdk d  has to be assigned for each pair of materials filling linked elements. 

In the second model (the approximation of unstable crack growth) it is assumed that if the fracture criterion threshold is 

exceeded, a crack begins to grow spontaneously according to some specified law  , ... 0
ij

ijlink
link

dk
f t k

dt
  , where t is time. 

In the simplest case this dependence can be considered as a constant ( 0ij
linkdk dt const  ), that means that crack advances 

through pair interaction area with constant velocity Vcrack. The value of Vcrack is a predefined (model) parameter, which 
reflects the features of rheology of the interface between the materials filling interacting elements. In particular, for brittle 
materials Vcrack can be set to be equal to transverse sound velocity, while for ductile materials its value, obviously, should 
be significantly smaller. Note that the model of unstable crack growth has to be used together with requirement of 
exceeding the fracture criterion threshold at each time step during crack advance through the area of pair interaction. 
Model parameter Vcrack has to be assigned for each pair of materials filling linked elements. 

 
Possibility of unlinked to linked transition 
Chemical bonding of contacting unlinked automata is imitated by unlinkedlinked transition of the pair state (this transition 
is interpreted as formation of new chemical bond or recovery of previously broken one). Note that such transition 
describes “healing” of partially linked pairs of elements ( 0 1ij

linkk  ) as well. Physical mechanisms of “integration” 
(linking) of independent material fragments into a consolidated piece could be different and include cohesion (or 
adhesion) of smooth and pure enough contacting surfaces under compression, “welding” of contacting surfaces under the 
condition of compression and intensive friction, interpenetration (“mixing”) of surface layers of contacting material 
fragments as a result of strong compression and intensive shear (torsion) under constraining side boundary conditions, 
healing of nano- and microscopic damages and cracks and so on. Therefore specific form of bonding/linking criterion is 
defined by physical peculiarities of contact interaction of automata as well as by chemical composition and structural 
features of interacting surfaces.  
Due to a surface roughness the process of “integration” of surface layers of contacting automata is gradual. The degree of 
“integration” of surface layers increases with increasing the values of variables of loading (normal load, shear load, plastic 
work of deformation). To take into account these features, the following model of linking/bonding of unlinked and 
contacting automata is suggested. The change of degree of “integration” of surface layers of totally or partially unlinked 
elements i and j is taken into account by means of change of the value of previously introduced coefficient ij

linkk  (see 

Section The model to calculate debonding of the pair (linkedunlinked transition)). In the framework of this model the criterion of 
pair linking takes the form of dependence of ij

linkk  on the variables of loading. The following simple and physically based 
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criteria are proposed: 
1. Linear dependence of ij

linkk  on specific normal force ij: 
 

         min
max min

, , 0,

0

ijij ij
link ij ij ij peak

ij
link

k if

k otherwise


    

 

 
        
 
 

    (38) 

 

where ij is a current value of specific central force in the pair i-j; ij is an increment of specific central force during one 
time step t; min is the minimum (threshold) value of normal pressure in the pair (negative specific normal force) for 
linking; max (max>min) is another parameter having the dimension of specific force and regulating the slope of the 

dependence  ij
link ijk  ; ij

peak  is a maximum value of specific normal force previously achieved from the moment of linking 

beginning. 
2. Linear dependence of ij

linkk  on plastic work of deformation Wij taking into account specific normal force ij: 
 

 

 
min

min

, ,

1, ,

0

ijij
link ij ij

ij
link ij ij

ij
link

W
k if W W

W

k if W W

k otherwise






 

 


     

     
 


       (39) 

 

where W is normalizing parameter depending on specific normal force ij: 
 

   
max min min

min

max min

ij
W W W W   

 

 

 
  


        (40) 

 

Here Wij is an increment of plastic work of deformation of the pair i-j during one time step t; 
min

W  is the value of 

plastic work to make pair totally linked at threshold normal pressure min; 
max

W  is the value of plastic work to make pair 

totally linked at normal pressure max (normally 
max min

W W  ). Plastic work in (39) has to be considered in specific units 

(per unit of volume). Parameters min, max, 
min

W  and 
max

W  in criteria (39)-(40) are assigned (user-defined) values, which 

have to be determined for each pair of materials filling elements i and j. 
One of the problems with the use of the criterion (39) is the calculation of Wij. As a first approximation it can be 
considered as the sum of increments of plastic work of deformation of both interacting elements/automata: 
 

ij i jW W W               (41) 
 

A specific expression to calculate increment of plastic work of deformation of the element is determined by the applied 
model of plasticity. In the case of the above model of plasticity with von Mises criterion the value of Wi can be 
calculated as follows: 
 

   
   

   2 2

int int int int1 1

int int1

0.5 1

2 3 3

i i i i

n ntotal elast n n
i i i i i

i in n

W A A
G G

   

 
 



          


 
    (42) 

 

where total
iA  and elast

iA  are increments of total work of deformation and its elastic part correspondingly, n is a number 
of time step. 
In a general case criterion of pair linking has more complex form as it takes into account combined influence of central 
force, plastic work and other parameters of pair interaction including strain rate and/or relaxation times.  
Note that during time-distributed process of pair linking the condition of bond breaking in a pair can be achieved. 
Therefore, under certain conditions, local processes of linking and unlinking can proceed in parallel (unlinkedlinked 
transition). 
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MCA-BASED STUDY OF FEATURES OF DEFORMATION AND FRACTURE OF METAL-CERAMIC COMPOSITES 
 

apabilities and advantages of the developed approach to the construction of many-body potentials/forces of 
interaction between particles (discrete elements or movable cellular automata) and implemented rheological 
models make it possible to study the response (including fracture) of heterogeneous materials and media of 

different nature. An important area of application of particle-based numerical modeling is investigation of the influence of 
the features of internal structure on the mechanical properties and fracture pattern in composite materials. This will be 
demonstrated by the example of MCA-based modeling of particle-reinforced metal-ceramic composite. 
Metal-ceramic composites are advanced representatives of the class of dispersion-reinforced materials, which have 
enhanced values of mechanical and service characteristics, such as strength, stiffness-to-weight ratio, crack growth 
resistance, wear resistance, fracture energy, ratio of thermal conductivity to thermal expansion coefficient, thermal stability 
and so on. This makes them very attractive for a wide application in various industries as materials for extreme operating 
conditions [41-43]. At the present time working parts of machines and mechanisms operating under conditions of shock 
loading, abrasion, high temperatures and corrosive environments are made mostly of metal-ceramic composites on the 
basis of very hard and refractory compounds (carbides, nitrides, carbonitrides) with metallic binder (nickel and iron alloys 
are mainly used) [41,42,44-46]. This class of materials is fabricated from powder mixtures of the compounds using powder 
metallurgy methods [41,42,47]. Mechanical and physical properties of the sintered metal-ceramic composite are 
determined, in addition to phase composition, by a number of structural factors. Some of them are conventionally 
observed: volume fraction, dispersion (including the size distribution), geometry and faultiness of reinforcing particles, 
structural-phase state of the metallic binder et al. [41,42,48,49]. It should be noted that one of the key elements of the 
internal structure of the metal-ceramic composites are the interfaces between particles of refractory compounds and a 
metallic binder. The change in technological peculiarities of metal-ceramic composite fabrication (in particular, applying 
additional heat treatment of the composite) can vary the geometry (width) of interfaces as well as their structural and, 
consequently, the mechanical properties [50]. 
The analytical models and numerical simulation are of great importance for studying the mechanical properties of 
composite materials and their connection with geometric and mechanical properties of inclusion/matrix interfaces. As a 
rule, the analytical models to study the effect of the properties of interfaces on the macroscopical mechanical properties of 
dispersion-reinforced composites are valid for elastic or viscoelastic approximations and a regular packing of very hard 
inclusions having a simple geometry. In this connection the predominant attention in solving such problems is given to 
the numerical simulation of deformation and fracture of composites taking into account their mesoscopical internal 
structure. Finite element and finite difference methods are most extensively used numerical techniques for this purpose 
[48,51-53]. With the application of these numerical methods the influence of various structural factors (geometry, volume 
fraction, size and spatial distribution of reinforcing particles) on the elastic and strength properties, deformation capacity 
and fracture toughness of dispersion-reinforced composites was investigated [48,52,54]. At the same time, the influence of 
strength properties and the width of interphase boundaries interfaces on the mechanical characteristics of metal-ceramic 
composites is still under discussion. Thus in this paper, particle-based MCA method has been applied to study the 
influence of these factors on strength, ultimate strain and fracture energy of the composite under dynamic loading. A TiC-
particle-reinforced Ni-Cr matrix composite (50 vol.% TiC) has been chosen as a model system classified as the metal-
ceramic composite materials in which the particles are much stiffer than the binder. 

 
Mesoscopical model of metal-ceramic composite 
The TiC-particle-reinforced Ni-Cr matrix composite (50 vol.% TiC) was used as a prototype to create a numerical model 
of metal-ceramic sintered composite. A typical microstructure of Ni-Cr/TiC composite is shown in Fig. 8a. As can be 
seen from Fig. 8a, carbide component consists of particles with quite complex geometrical shapes. The mean size of 
reinforcing particles Dmean is 2.71.2 m, maximal particle size Dmax is 7.6 m, Fig. 8b. It is necessary to note that thermally 
activated diffusion processes during the course of sintering result in the formation of a transition zone (the region of 
variable chemical composition) at the ceramic/metal interfaces. The characteristic width (Hif) of the transition zone in 
considered composite is a few micrometers. Note that local profile of distribution of chemical elements is defined by the 
features of a local microstructure (including the distance to neighbouring TiC particle, shape of particle surface and so 
on). Thus, the metal-ceramic composite contains three main structural components: a metallic binder (Ni-Cr), integrated 
high-strength brittle inclusions (TiC) of mesoscopical scale (1-10 m in diameter) and transition zone "particle-binder" 
(the region of variable chemical composition), whose width can reach several micrometers. 

 
 

C 
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(a) (b) 
 

Figure 8: (a) Typical microstructure of TiC-particle-reinforced Ni-Cr matrix composite (50 vol.% TiC); (b) size distribution of carbide 
particles (Dmean = 2.71.2 m). 
 
Mentioned above main features of the mesoscopical structure in metal-ceramic composite formed the basis for a two-
dimensional structural model developed in the framework of the numerical MCA method. Each of constituents is 
modelled by ensemble of movable cellular automata (discrete elements) with appropriate rheological parameters (thus the 
cellular automaton simulates a domain/fragment of an inclusion, a binder, or an interface zone). The size d of a cellular 
automaton is an assigned parameter of the model. In the presented model a requirement for the value of d was accepted 
to be a few times higher than the characteristic size of grains of the binder. In that case mathematical models of elasticity 
and plasticity of isotropic media can be correctly applied to describe the deformation of the material fragment with 
characteristic size corresponding to the automaton size d. The maximal value of the dimensional parameter d of the model 
determines a specification of TiC particle shape in detail. "Optimum" definition range of the value d (the size of the 
discrete element) is 0.1-0.3 m for the considered metal-ceramic composite (typical grain size of the metallic matrix in this 
composite does not exceed 0.1 m). 
As an example of MCA-based structural model, Fig. 9 shows the structure of an idealized metal-ceramic composite with 
TiC particles having a nearly spherical shape and the average size DTiC of 3 m (the size of movable cellular automaton in 
this case is d=0.3 m). In this example the approximation of “monosize” distribution of TiC particles is used (sizes of the 
inclusions are uniformly distributed about the mean value DTiC; the amplitude of deviation from the mean value of the 
particle size is 0.1DTiC). The volume fraction of carbide particles in the model composite is 45%, which is close to the 
corresponding value (50%) in the real composite. The spatial distribution of TiC inclusions in the shown idealized 
composite is slightly inhomogeneous (i.e. no pronounced clustering of particles), the characteristic distance between the 
surfaces of neighboring particles is about 1.5 micrometers that is 50% of DTiC. 
Depending on features of internal structure of real composite and on the level of detail of the model there are two ways to 
account spatial (including width) and physical-mechanical characteristics of the transition layer between reinforcing 
particles and a metallic binder: 
1. The model of a "narrow" transition zone. In this model, it is assumed that the width of the interface is much smaller 

than the size of movable cellular automaton d. Capabilities of the model are limited by specifying certain values of 
strength parameters (adhesive strength) in pairs of movable cellular automata, one of which simulates a segment of the 
inclusion surface and the second one represents an adjoining (adjacent) segment of the binder. Such approach does not 
take into account geometric characteristics of the transition zone, the presence of a concentration gradient of the 
chemical elements, and hence the existence of a gradient in mechanical properties. The defining characteristics of a 
"narrow" interphase boundary are its strength properties. An assigned value of adhesive strength for the pair of 
dissimilar cellular automata corresponds to the effective strength of interphase boundary. Note that described model 
does not account for the features of the rheology of the transition layer and can be used effectively in the case where 
the width of this layer does not exceed the assigned size of movable cellular automaton d. 

2. The model of a "wide" transition zone. In this model, it is assumed that the width of the interface is comparable or 
greater than the size of the movable cellular automaton d. Here particle/binder interface is regarded as an area of 
variable composition of chemical elements (Ti, Ni, Cr, C) and modeled by several layers of cellular automata. Physical 
and mechanical characteristics of these “transition” automata vary with a distance from particle surface into the volume 
of binder for a given law (in accordance with local chemical composition). Relations between a local content of 
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chemical elements and the corresponding rheological properties of “transition” cellular automata must be determined 
on the basis of experimental data. The proposed model can be efficiently used in numerical simulation of composites 
in the case of the width of the transition zone higher than the assigned size d of a cellular automaton. 

 

    
 

(a) (b)
Figure 9: Structural model of metal-ceramic composite: (a) general view and (b) enlarged area inside of grey rectangle in (a). Main 
constituents of the structure are: nickel-chromium plastic binder (1) and high-strength brittle TiC particles (2). 
 
To implement the explicit way to account the transition zone between particles and a binder in the numerical model of 
composite the special algorithm was developed. This algorithm uses information about a change in characteristic particle 
size during composite fabrication and resulting profile of distribution of chemical elements (for example, Ti) in formed 
transition layer. The output of the algorithm is a set of data about physical (density, concentration of chemical elements) 
and mechanical characteristics of movable cellular automata belonging to transition zone. These properties correspond to 
material at an appropriate distance from the surface of the inclusion. Example of a model metal-ceramic composite with 
explicit consideration of transition zone between particles (TiC) and the binder (Ni-Cr) is shown in Fig. 10. 
 

 
 

Figure 10: The internal structure of a model metal-ceramic composite with a "wide" transition zone (~0.8 m in the present example) 
between TiC particles (shown in black) and the Ni-Cr binder (shown in light gray). Shades of gray color of varying intensity mark areas 
of the transition zone with appropriate content of TiC. 
 
The main problem when using an explicit way of modeling the transition zone at particle/binder interface is the 
determination of rheological parameters and strength of transition areas (layers) that are at different distances from the 
particle surface. These parameters are difficult to determine in experiment. Therefore in the present study a simple (phase 
mixture) model was used to determine the mechanical properties of cellular automata that simulate transition zone. It is 
based on the assumption that the transition zone has a structure similar to the solid solution of titanium and carbon in the 
metallic binder. Their content in the binder decreases with increasing distance from the particle surface. In this model the 
rheological and strength parameters of transition zone are determined by linear interpolation of corresponding values for 
titanium carbide and (Ni-Cr) binder (that is proportional to the local concentration of titanium and carbon): 
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trans TiC TiC NiCr NiCrP P C P C           (43) 
 

where P is a considered parameter (Young modulus, Poisson ratio, yield stress, tensile or compressive strength and so on), 
C is a local concentration of corresponding constituent of the composite ( 1TiC NiCrC C  ). 
The components of metal-ceramic composites have very different rheological properties (high-strength brittle particles of 
refractory compound and elastic-plastic metallic binder). To simulate the processes of deformation and fracture of such 
complex systems by MCA method the developed two-dimensional model of elastic-plastic interaction of cellular automata 
is used. An incremental theory of plasticity of isotropic medium with von Mises plasticity criterion and the plane stress 
approximation are used to model deformation of metallic binder on the mesoscopical scale. Elastic constants of the 
material and the diagram of uniaxial loading are used as input parameters for the model of interaction of cellular automata. 
These parameters determine mechanical response function of movable cellular automaton. 
To simulate the elastic-plastic metallic binder of the composite the parameters of mechanical response of movable cellular 
automaton conforming to the mechanical properties of nickel-chromium alloy were chosen. The response function of 
automaton modeling (Ni-Cr) is a “–” diagram with a linear hardening (curve 1 in Fig. 11). This diagram was obtained by 
approximation of the experimental diagrams for uniaxially compressed macroscopical samples of the alloy. Mechanical 
properties of automata simulating a high-strength brittle inclusion correspond to idealized properties of real particles of 
titanium carbide in ceramic phase (linear-elastic behavior up to failure, curve 2 in Fig. 11). 
 

 
 

Figure 11: Mechanical response function of movable cellular automata for modelling (Ni-Cr)-alloy (1) and titanium carbide TiC (2). 
 

An important role in building the mechanical model of composites belongs to determining the strength criterion (fracture 
criterion) for the system components (TiC and Ni-Cr) and the parameters of the chosen criterion. It is well-known that 
fracture is a fundamentally brittle and extremely localized phenomenon. Since the physical mechanisms of fracture are 
concerned with break of interatomic bonds and spatial separation of atomic layers, the criterion for material failure, in 
contrast to the criterion of plasticity, cannot be determined solely by the shear stresses and should take into account the 
effect of hydrostatic pressure. Therefore a two-parameter criterion of Drucker-Prager (36) was applied as one for 
interelement bond failure (fracture criterion) in the proposed model.  
It is necessary to note that for each of the composite components there are reliable published data about only one of the 
parameters of the criterion (36). Tabulated data are the values of the compressive strength ( TiC

c ) for TiC and tensile 

strength ( NiCr
t ) for (Ni-Cr)-alloy. Values of the second parameters ( NiCr

c  and TiC
t ) are unknown or estimated very 

roughly and uncertainly. Therefore, estimates of these missing parameters of fracture criterion were used in the model: 
1. (Ni-Cr)-alloy: NiCr

t =700 MPa (tabulated value), NiCr
c =2100 MPa (estimated value), 3NiCr NiCr

NiCr c ta    . 

2. TiC: TiC
c =10000 MPa (tabulated value for ceramic phase), TiC

t =2000 MPa (the tensile strength was estimated under 

the assumption of the absence of significant defects in TiC particles), 5TiC TiC
TiC c ta    . 

As discussed above, the service characteristics of metal-ceramic composite (as well as of other composite materials) are 
largely provided by the adhesion of the binder to the reinforcing refractory inclusions. Depending on applied approach to 
the description of interphase boundaries the parameters of adhesive strength of dissimilar cellular automata (e.g., automata 
modeling TiC and Ni-Cr) were assigned in different ways: 
1. When using the model of “narrow” interphase boundaries, the parameters bound

t  and bounda  are the only characteristics 
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of the model interface. In the simulations carried out, the parameter bound
t  was considered as a variable (assigned) 

value and varied within the limits between 0.5 NiCr
t  (imitation of weak interfaces) and 2.5 NiCr

t  (extremely strong 

interfaces). The parameter bounda  in the criterion (36) was assumed to be 3 in all calculations. 

2. When using the model of “wide” interphase boundaries, the values of strength parameters t  and c  for the transition 

layer with certain local concentrations of components ( TiCC  and NiCrC ) were determined on the basis of phase mixture 

model using the relation (1). For a pair of dissimilar cellular automata (characterized by different values of TiCC ) 

parameters c  and t  of bond fracture criterion (36) were defined as the minimal values corresponding to the 
strength characteristics of the areas modeled by these automata. For example, for a pair of dissimilar automata 
characterized by concentrations of TiC 1TiCC   (automaton with pure TiC properties) and 0TiCC   (automaton with 

pure (Ni-Cr)-alloy properties) the value of tensile strength for the pair t  is equal to NiCr
t : NiCr

t t  =700 MPa. 

Compressive strength for this pair is determined in a similar way: NiCr
c c  =2100 MPa. 

 
Simulation results 
A three-point bending test of the model samples of metal-ceramic composite TiC-(Ni-Cr) was simulated. Since the main 
research task was to analyze the changes in "macroscopical" response of the composite due to variation of the 
characteristics of interphase boundaries, the complex geometry of the mesoscopical TiC particles and features of particle 
size and spatial distributions were not taken into account. A composite with an idealized internal structure shown in Fig. 9 
(the model of "narrow" interfaces) was considered. Note that TiC particles in real metal-ceramic composite may contain 
damages and microcracks. To eliminate the influence of this factor on the simulation results it was assumed that TiC 
particles in the model sample have a "monolithic" internal structure and do not contain significant defects. All interphase 
boundaries were assumed to be free of flaws as well. 
The structure of the model set-up is shown in Fig. 12. Dynamic loading by 20 m cylindrical mandrel with constant 
velocity Vload was applied to the sample of 24130 m in size. The values of loading velocity ranged from 0.2 m/s to 
1 m/s. The value of the maximal resistance of the sample to bending and the corresponding displacement of the mandrel, 
the dynamics and pattern of the sample fracture as well as the fracture energy characterized by an area under the loading 
diagram were analyzed. 
 

 
 

Figure 12: Scheme of the simulation of three-point bending test of the model composite sample. 
 

The simulation results showed that the change in interface strength ( bound
t ) leads to a purposeful change in the integral 

characteristics of the composite response of 2-10 times. Fig. 13a shows diagrams of dynamic loading of simulated 
composite sample with different values of adhesive strength of the metallic binder to carbide particles (loading velocity in 
these calculations was Vload = 0.4 m/s). The diagrams are plotted in the terms “normalized stress NiCr

t   versus bending 

angle ”. Here stress  is defined as a force of composite resistance to mandrel indentation referred to the area of the 
upper surface of the mandrel. The bending angle  is calculated as is shown in Fig. 13b. It is established that increasing 
the strength of “narrow” interphase boundaries leads to a twofold growth in strength of the composite and makes the 
value of the limit strain (strain corresponding to peak resistance) higher by an order of magnitude. Note that the falling 
(supercritical) part of the loading curves is associated with the initiation and development of main crack in the sample. 
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(a) (b) 
 

Figure 13: (a) The load-displacement diagrams for the model samples of metal-ceramic composite with different strength ( bound
t ) of 

“narrow” interphase boundaries under three-point bending test (diagrams are expressed in terms of normalized stress NiCr
t   and 

bending angle ): 0.5 NiCr
t  (1), 1.0 NiCr

t  (2), 1.5 NiCr
t  (3), 2.0 NiCr

t  (4); (b) scheme for definition of bending angle . Results 
presented hereinafter correspond to the loading velocity of Vload = 0.4 m/s. 
 

The change of integral parameters of the composite response with increase in strength of interphase boundaries ( bound
t ) 

has a pronounced non-linear character. Fig. 14a shows dependence of the sample strength (maximal value of ) on the 
value of bound

t . This dependence can be divided into three main sections. The first one (section I in the Fig. 14a) 

corresponds to low values of interface strength ( bound NiCr
t t  ) and is characterized by small values of integral strength of 

the composite. In the second (transition) section ( 2.0NiCr bound NiCr
t t t    ) there is a considerable increase in the strength 

of the composite. In the third section corresponding to composites with high strength of interfaces ( 2.0bound NiCr
t t  ), 

the value of composite strength reaches the saturation. The described stages are pronounced in the curve of interface 
strength depending on fracture energy (Fig. 14b). It can be seen that the fracture energy of composites with high-strength 
interphase boundaries increases by an order of magnitude in comparison with composites containing low-strength 
interfacial boundaries. 
 

(a) (b) 
Figure 14: Strength (a) and  fracture energy (b) in model metal-ceramic composite depending on interphase boundary strength bound

t . 
Values of interphase boundary strength and “macroscopical” composite strength are normalized by tensile strength of the binder 

NiCr
t . Fracture energy was calculated as an area under the loading diagram expressed in the units “normalized stress – bending angle” 

(Fig. 13a). 
 
The analysis of simulation results showed that staging of the change in integral parameters of the composite response with 
increase in strength of interphase boundaries ( bound

t ) is associated with a change in the nature of fracture. Fig. 15 shows 
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the main stages of fracture in composites with different values of the strength of interphase boundaries. In the case of low 
values of interface strength bound

t  (smaller than the strength of metallic binder NiCr
t ), from the early stages of loading (at 

small applied strain) TiC particles are detached (debonded) from the binder producing the extended splitted sites on the 
interphase boundaries, which are under tensile stresses (see top row in Fig.15). Increase in the applied strain joints these 
separate sites due to cracks passing through the binder. For high values of bound

t , under approaching of the strength of 
reinforcing particles the crack is nucleated, and it grows through the matrix bypassing the interphase boundaries, while 
interface zones remain virtually undamaged (see bottom row in Fig.15). In the "intermediate" range of interface strength 
( bound

t  is equal to or a bit higher than the value of binder strength) the character of composite failure changes from an 
“interfacial” type to a “binder” one. It is clear that crack initiation in the plastic binder takes place under high applied 
strains, and crack growth is rather slow. As a consequence, fracture energy of composites with high-strength interfacial 
boundaries increases by an order of magnitude compared to composites with low-strength interfaces (Fig.14b). Thus, the 
strength of interfaces between reinforcing inclusions and plastic binder is a critical factor, which determines a number of 
service characteristics in metal-ceramic composites, such as strength, critical strain, crack growth resistance and others. 
The strength of the interface is an integral parameter whose value is determined by a number of features of internal 
structure and geometry of the given boundary. One of the key factors determining the strength of metal-ceramic 
composites is the width of the transition zone (zone of variable chemical composition) Hif, which determines gradients of 
concentration of chemical elements and of local mechanical properties. As shown in [52, 55], shear stresses at the 
interfaces between elastic-brittle reinforcing particles and plastic matrices may exceed stresses in the matrix up to 5-10 
times. This is due to a significant difference in the rheological characteristics of the interacting components of the 
composite. It is clear that high stress concentration determines a rapid debonding of particles from the binder in case of 
weak interphase boundaries (top row in Fig.15). At the same time, wide transition zones at the interface can reduce the 
magnitude of the gradient of mechanical properties and, thus, decrease the stress gradient. That "smearing" of stress 
concentrator can lead to a substantial increase in the strength and deformation characteristics of the interfaces. This effect 
can be demonstrated by the given simulation results on three-point bending test of the metal-ceramic composite with 
"wide" interphase boundaries. A composite with the interphase boundary of 0.8 m wide was considered (the structure of 
the transition zone is shown in Fig. 10). Rheological and strength characteristics of movable cellular automata modelling 
the transition zone areas were determined on the basis of phase mixture model (43) using linear interpolation of 
corresponding values (parameters) for the titanium carbide and (Ni-Cr)-alloy. Fig. 16 shows the load-displacement 
diagrams for three-point bending test of the model sample of considered metal-ceramic composite (curve 1) and 
composites with "narrow" interphase boundaries (curves 2 and 3). It can be seen that a sufficiently wide transition zones 
provide high values of strength, ultimate strain and fracture energy of the material. The values of these parameters are 
close to the maximum corresponding to the metal-ceramic composites with high-strength "narrow" boundaries (Fig. 14). 
Note that for the composite with wide interfaces, fracture occurs by means of initiation and propagation of cracks in the 
binder. As a rule, the crack envelopes the transition zones in this case. The foregoing shows that the broad interphase 
boundaries with a gradual change in mechanical properties possess high values of the effective strength and have a 
significant influence on integral (“macroscopical”) mechanical properties of metal-ceramic composite. 
 

 
Figure 15: Dynamics of fracture in metal-ceramic composite specimens characterized by different values of the strength of interface 
boundaries bound

t : 0.7 NiCr
t  (top row); 2.5 NiCr

t  (bottom row). Here  is bending angle. 
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Figure 16: The load-displacement diagrams for three-point bending test of model samples of metal-ceramic composite with “wide” 
(curve 1) and “narrow” (curves 2 and 3) interphase boundaries (Vload = 0.4 m/s). Curves 2 and 3 correspond to composites with 
different values of strength ( bound

t ) of “narrow” interfaces: 1.0 NiCr
t  (2); 2.0 NiCr

t  (3). 
 
As follows from analysis of stress distribution in model composites, high effective strength of wide interphase boundaries 
is a result of a significant expansion of the area of internal stress decreasing from high values in the reinforcing particles 
(which are stress concentrators in the composite [55]) to significantly lower values in the plastic binder (Fig. 17). This 
leads to two-three-fold decrease in the value of stress gradients for wide interphase boundaries as compared to "narrow" 
interfaces. As a consequence of a smoother distribution of internal stresses, the integral (“macroscopical”) deformation 
and strength characteristics of metal-ceramic composite significantly increase, and fracture mechanism changes from 
damages and crack formation at the interfaces to the crack propagation in the plastic binder. 
 
 

 
 

 
(a) (b) 

 

Figure 17: Stress intensity distribution in the central part of the samples of metal-ceramic composite with “narrow” (a) and “wide” (b) 
interphase boundaries. Three-point bending test. Stress distributions correspond to the bending angle  = 3.5 
 

Analysis of simulation results indicate that increase of the width of transition zone at the interphase boundaries in metal-
ceramic composites can provide an increase in the integral parameters of mechanical response of materials (strength, 
ultimate strain and fracture energy). Fig. 18 shows dependencies of the sample strength (Fig. 18a) and fracture energy 
(Fig. 18b) in model metal-ceramic composite depending on width of transition zone. It is seen that presence of even 
narrow mesoscale transition zone (~0.3 m) between the TiC particles and (Ni-Cr)-alloy increases specimen strength and 
the fracture energy in 1.5 and 5 times respectively. A further widening of the interface leads to decrease of the rate of 
increase of integral parameters of the composite response. And when the value of Hif becomes comparable to the average 
distance between TiC particles (Hif >1 m) changing of strength and fracture energy of the composite becomes 
insignificant.  
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(a) (b) 
Figure 18: Strength (a) and fracture energy (b) in model metal-ceramic composite depending on width of transition zone. Value of 
composite strength is normalized by tensile strength of the binder NiCr

t . 
 
 
CONCLUSIONS 
 

he group of particle-based numerical methods belonging to the concept of discrete elements (DE) is an 
extensively used and efficient tool to study complex processes of deformation and fracture of heterogeneous 
solids under complex loading conditions. The main advantage of these methods compared to conventional 

numerical methods in continuum mechanics (FEM, FDM and other) is a capability of direct modeling of numerous 
fracture accompanied by sliding and repacking of fragments, dilatancy of the medium and so on. Nevertheless, until 
recently, capabilities of this methods were limited by description of brittle and granular materials and media.  
A new approach which makes possible fundamental extension of the application field of DE-based methods to elastic-
plastic and visco-elastic-plastic solids is proposed in the paper. This approach is based on the idea about building 
associations between the components of stress/strain tensor of the local volume and the inter-element 
forces/displacements. The proposed associating allows one to rewrite relations of the applied model of plasticity (which 
are conventionally written in terms of stress/strain tensor components) in terms of forces and displacements or their 
increments. In particular, implementation of plastic flow theory with von Mises yield criterion within the discrete element 
concept is described. The movable cellular automaton (MCA) method [22-24] combining formalisms of cellular 
automaton methods and discrete element method was used as a numerical technique to implement this model of 
plasticity. Note that the developed approach provides potential possibility to realize various models of elastoplasticity or 
viscoelastoplasticity (including Dricker-Prager, Nikolaevskiy and other dilatant plasticity models) in the framework of 
“conventional” particle methods. Furthermore, it allows one to get isotropic (independent of the packing of elements) 
deformation pattern even on regularly packed particle ensembles, that is a fundamental problem in conventional 
formalism using pair-wise interaction potentials.  
Another important advantage of the developed formalism of discrete element interaction is a possibility to directly apply 
complex multiparametric fracture criteria (Drucker-Prager, Mohr-Coulomb, etc) as criteria of interelement bond breakage. 
The use of these criteria is very important for correct modeling of fracture of complex heterogeneous materials of various 
nature. 
To demonstrate the capabilities of the approach some aspects of the problem of modeling of deformation and fracture of 
metal-ceramic composites are considered. On this example the prospects of application of particle-based numerical 
methods (in particular, of movable cellular automaton method) to study the influence of the features of internal structure 
of heterogeneous materials on their mechanical properties (strength, fracture toughness, etc) and fracture pattern are 
shown. 
At the present time described models of interaction of movable cellular automata belonging to the concept of discrete 
elements are approved and widely used to study fracture-related problems at different scales from nanoscopic to 
macroscopic one, whose investigation by conventional numerical methods of continuum mechanics is difficult. The 
problems of this type include physical and mechanical processes in contact patches of technical and natural frictional pairs 
[24,56-58], multiple (quasi-viscous) fracture of porous ceramics or composite coatings [25,59,60], dynamics of damage 
accumulation and dilatancy in active fault zones [61,62] and so on. 
 

T 
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APPENDIX A 
 

et’s assume that under consideration of isotropic linearly elastic medium the expressions for specific forces of 
normal (central) and shear (tangential) response of discrete element i to mechanical action by neighbouring 
element j are defined on the basis of reformulation of Hooke’s law for diagonal and off-diagonal components of 

stress tensor (19): 
 

   
 

22 1

2

ii
ij i meani j

i

ij i i j

GG K

G

  

 

   

 

        (A1) 

 

Explanation of meaning of variables in (A1) can be found in Sections 2-4 (Main parameters of interaction of discrete elements - 
Discrete element interaction for modeling consolidated elastic-plastic medium). 
The proposed expressions (A1) are correct as they provide fulfillment of Hooke’s law (19) for average stress and strain 
tensors in the volume of discrete element i. Actually, substitution of relations (A1) in the expression (16) for ==x 
leads to the following relationship: 

L 
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To understand the meaning of the first contribution in (A2) 
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the notion of average strain tensor in the volume of discrete element i has to be introduced. Considering relative normal 
and shear displacements of interacting elements i and j as components of the vector of relative displacement the 
expression for average strains i

  in the volume of element i can be formally written by analogy with i
 . In considered 

two-dimensional problem statement it has the following form: 
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According to (A3) the first contribution in the right part of (A2) has the meaning of corresponding average strain tensor 
component: 
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To understand the meaning of the sum  
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in the second contribution in (A2) the procedure of homogenization of unit second-rank tensor 
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has to be considered. General expression for average value ie  of unit tensor component ie  in the volume of discrete 

element i ( i ie e  ) has the form: 
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where the identity 
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was applied (the Kronecker delta  and the Einstein summation convention are employed here); r is projection of a 
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radius-vector to corresponding axis of laboratory system of coordinates. The volume integral in (A5) can be rewritten as a 
surface integral by applying the Gauss divergence theorem: 
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where Si is the surface of element i; n is the unit outward normal to infinitesimal surface area dS. The element i is loaded 
by forces acting at discrete interaction surfaces Sij (10). So, its total surface Si can be represented as a set of Sij, and surface 
integral can be replaced by the following sum: 
 

, ,
1

1 1
cos cos

i

i

N
i

ij ij ij ij
ji iS

e x n dS S q     


 
   ,       (A7) 

where ij, is defined as shown in the Fig.5; Ni is total number of interaction surfaces (
1
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j
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 ). In accordance with 

(A7) the sum in the second contribution in the right part of (A2) is: 
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So, the expression (A2) can be rewritten in the form: 
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which is Hooke's law for average stress and strain tensor components i
xx  and i

xx . 
Corresponding expressions for other components of average stress tensor can be derived in analogous fashion: 
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Relations (A9)-(A11) are derived on the basis of assumption that total surface Si of the element i is “occupied” by 
interacting neighbours j. However, if a part of surface Si of automaton/element i is free (i.e. neighbouring elements j 
“occupy” only part of Si), corresponding unoccupied surfaces Sik can be formally considered as surfaces of interaction 
with virtual neighbours having zero stiffness. In that case specific forces at unoccupied surfaces Sik has to be assigned as 
zero: ij=ij=0 (this doesn’t hold true for corresponding pair strains: i(j)0 and i(j)0). Therefore equalities (A9)-(A11) are 
correct for discrete elements with partially free surface as well. In accordance with above mentioned the number of real 
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neighbors of element i ( real
iN ) can be used in expression (16)-(16) when calculating average stress tensor components. At 

the same time a total number of neighbours (including virtual ones) have to be used in expression (A3). 
Thus, average stress and strain tensor components are connected by Hooke’s law when expressions (A1) are used for 
assigning central (normal) and tangential (shear) response of particle to mechanical impact of neighbours. This result 
confirms correctness of the proposed approach to description of interaction of discrete elements (or movable cellular 
automata) simulating locally isotropic linearly elastic medium. 
 
 
APPENDIX B 
 

roposed expressions  
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for scaling specific central and tangential forces of response of the element/automaton i to the impact of the neighbor j 
provide a fulfillment of radial return algorithm of Wilkins (25)-(26) for average stresses in the volume of the element i. 
Actually, substitution of relations (B1) in the expression (16) for ==x leads to the following equation: 
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According to (16) the sum  
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in the first contribution in the right part of (B2) has a meaning of corresponding average stress tensor component before 
stress returning procedure (“elastic” stress i

xx ).  
In accordance with (A7)-(A8) the second sum  
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in the right part of (B2) is a diagonal component i
xxe =1 of unit second-rank tensor.  

Therefore, the expression (B2) can be rewritten in the form: 
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which coincides with expression (26) for the case ==x. 
Corresponding expressions for other components of average stress tensor can be derived in analogous fashion: 
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           (B5) 

 

It is clear that use of expressions (B1) along with (26) provides for rigorous satisfaction of the necessary conditions  

 i i
mean mean 


  

and 

 int int
i i

iM 

  

of the algorithm of Wilkins. 
Thus, the proposed method (expressions (B1) and (26)) of scaling (return) of specific forces in pairs of discrete elements 
(or movable cellular automata) rigorously match radial return algorithm by Wilkins. This makes possible correct simulation 
of plastic deformation of consolidated solids under mechanical loading by the ensemble of discrete elements. 
 
 
APPENDIX C 
 

lgorithm of Wilkins for scaling local stresses in plane stress approximation (two-dimensional problem statement) 
is more complex than in general 3D problem or in plane strain state approximation. It is realized by iterative 
method [34]. When using a single iteration only, the procedure of scaling of stress tensor components can be 

represented as the following sequence of operations done at each step of integration of motion equations. 
1. At the current time step (n+1) elastic problem is solved in incremental fashion. New values of stresses   and strains 

  are results of this solution. Calculated stresses can be further adjusted while strain values are "frozen". 

2. New values of invariants of stress/strain tensor are calculated. Yield condition is checked. If the local stress state (point 
in the stress space) is inside the limit surface ( int pl  ), the procedure finishes. If the condition of crossing the yield 

surface is met, the value of stress scaling coefficient M is calculated. On of the features of stress scaling in plane stress 
state approximation is that the value of parameter M is a solution of the fourth-order polynomial equation [34]: 

     

   

2 2 22 2 2 2 2

2 22

4 1 3 2

4
2 1 0

3

xx yy xy zz

pl

b M M b s M M

M b M

  



         

    
     (C1) 

Here szz is a Z-component of deviatoric stress tensor ( 0zz  , zz means   );  41 Gb K   is a material elastic 

constant. In general, this equation has several different roots with different signs. The physical situation corresponds to 
the positive root that is less than 1 and closest to 1. General analytical solution of (C1) does not exist and therefore 
Wilkins proposed to use Newton’s iteration method with intplM    as an initial value for iterative procedure. 

3. Calculated coefficient M is then used to calculate irreversible (plastic) increment of Z-component of strain tensor 
( pl

zz ): 

 
 

1

2 1
zzpl

zz

s b M

G bM M



 

 
         (C2) 

Note that the variable szz in (C1)-(C2) corresponds to the solution of elastic problem at the current time step. 
4. Found parameters M and pl

zz  are then used for scaling of szz and stress tensor components xx, yy, xy: 
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Here upper stroke marks scaled values of stresses. Note that original expressions in [34] bind scaling of diagonal 
stresses to correction (adjustment) of the values of plastic increments of strain tensor and volume change during the 

time step:  ,plf       . Expressions (C3) are obtained by simple mathematical transformation of original 

relationships into the notation in terms of stresses:  , , ,pl
zz zz zzf s s      . 

5. The total increment of Z-component of strain tensor (zz) is calculated: 
 

   
2

zz zz mean meanel pl pln n
zz zz zz zz

s s

G K

 
   

   
               (C4) 

 

where el
zz  is elastic component of strain increment, mean   is mean stress value after stress scaling procedure (note 

that in contrast to 3D problem the procedure of stress correction in plane stress approximation is not accompanied by 
the persistence of mean stress because its value after the solution of elastic problem is overestimated [34]), index “n” 
indicates the value of corresponding variable referred to the end of the previous time step n. 

Implementation of this procedure within the framework of discrete element concept is concerned with scaling of element 
response forces ij and ij to satisfy the expressions (C3) for average stress tensor components in the volume of the 
element i. By the analogy with elastic problem the expressions for correction of ij and ij are obtained by direct 
reformulation of relationships for  and  in (C3): 
 

      ,1
2

i
zzi i i pl i

ij ij zz i zz i zz
i

ij ij i

s G
s M s M
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  

 

 
       


  

      (C5) 

 

where ,i pl
zz  is irreversible (plastic) increment of Z-component of average strain tensor in the volume of the element i. It 

is easy to demonstrate that scaling of element/automaton response forces ij and ij in accordance with (C5) rigorously 
satisfies the expressions (C3) for i

xx , i
yy  and i

xy . 

Note that in the case of multiple iterations of the procedure of stress/force scaling the relationships used have more 
cumbersome form [34], however their matter is the same. 
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ABSTRACT. The study of fragmentation statistics of brittle materials that includes four types of experiments is 
presented. Data processing of the fragmentation of glass plates under quasi-static loading and the fragmentation 
of quartz cylindrical rods under dynamic loading shows that the size distribution of fragments (spatial quantity) 
is fractal and can be described by a power law. The original experimental technique allows us to measure, apart 
from the spatial quantity, the temporal quantity - the size of time interval between the impulses of the light 
reflected from the newly created surfaces. The analysis of distributions of spatial (fragment size) and temporal 
(time interval) quantities provides evidence of obeying scaling laws, which suggests the possibility of self-
organized criticality in fragmentation. 
 
KEYWORDS. Fragmentation of brittle materials; Fractal statistics; Self-organized criticality. 
 
 
 
INTRODUCTION 
 

ragmentation is the process of breaking a solid into separate fragments caused by multiple fractures. Such 
phenomenon can be observed in both engineering and natural objects over a wide range of spatial and temporal 
scales. An investigation of fragmentation statistics generally includes the determination of the cumulative 

distribution of fragment sizes or masses, i.e., the number of fragments ( )N m  with a size or mass larger than S or m , 
respectively. The distribution type depends on loading conditions, material characteristics and sample geometries. Many 
types of distribution functions have been observed experimentally: log-normal, power-law, Mott, exponential, Weibull, 
and combined exponential and power-law [1 - 8]. Summarizing the results of experimental data processing, we can classify 
all these distribution functions into two groups: exponential and power law. The assumption that the exponential 
distribution is typical of the fragmentation of ductile materials and the power-law distribution characterizes brittle 
fragmentation has been discussed by Grady [7]. Donald Turcotte [8] has pursued the fragmentation of brittle materials as 

a fractal process resulting in the power law distribution function dN x  , where N  is the number of fragments, x  is 
the linear dimension of fragments, and d  is the fractal dimension. The fractal character of the distribution function in a 
wide range of fragment sizes allows Oddershede et al. [3] to suppose that the fragmentation exhibits self-organized 
criticality (SOC). In their seminal paper Per Bak, Chao Tang and Kurt Wiesenfeld [9] present a new concept of SOC; 
numerical simulation allows them to describe the behavior of a sand pile (example of a self-organized critical system) and 
to conclude: 
 distribution of life times of avalanches obeys a power law; 
 distribution of avalanche sizes follows a power law as well. 
In other words, to prove that the system exhibits SOC, it is necessary to establish the existence of a power law for 
temporal and spatial quantities. The purpose of this experimental study is to demonstrate that the fragmentation process 
exhibits SOC. To this end, we need to determine the distribution of temporal and spatial variables. It has been shown that 
for the fragmentation of glass plates under quasi-static loading there exists scaling in the crack pattern formed during 
fragmentation and fragment size distribution are also described by the power law. The experiments on quartz cylindrical 
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rods under dynamic loading were carried out to test the effect of sample size and variation in loading type. It was found 
out that the type of distribution function did not change, it remained a power law. The fragment size distribution was 
determined using a standard sieve analysis technique and electronic balance. In order to investigate temporal scaling, an 
original method was proposed. The main idea was to measure the kinetic of the appearance of the fracture surface. For a 
loaded glass sample illuminated with the light source, the newly formed fracture surface produced light impulses, which 
were registered by Photo Multiplayer Tube connected to the oscilloscope. The temporal variable was the interval between 
impulses, or in other words, the time between the fracture events. The statistical data processing shows that the 
distribution of time intervals obeys the power law. In the case of analyzing data corresponding to the initial time of the 
process the distribution of time interval is governed by the exponential law. The explanation of the fact that fracture 
kinetics at the initial stage is characterized by another distribution function requires additional investigation. 
 
 
FRAGMENTATION OF THE GLASS PLATES UNDERQUASI-STATIC LOADING  
 

uasi-static testing was performed in the experiments with glass plates loaded in a “sandwich” to save the glass 
fragmentation pictures (Fig. 1a). Using the original software, the images were transformed into schematic pictures 
corresponding to the fragmentation patterns (Fig. 1b). This allowed us to determine the size and number of 

fragments and the total length of cracks. We consider two types of scaling. The first type is based on the relation  

( ) ~ DL r r             (1) 

where ( )L r is the total crack length in the boxes of a size r r  centred at the point B   (Fig. 1b), and D  is the fractal 
dimension. The second type is the traditional definition of the cumulative distribution of fragment sizes, in other words, 
the calculation of the number of fragments ( )N S   with a size larger than S .  
 

 
(a) (b)

 

Figure 1: a) Photo of typical fragmentation patterns. b) Schematic pictures of the fragmentation patterns used to determine the size 
and number of fragments and the total length of cracks. 

 
The use of expression (1) was discussed by Sornette et al. [10]. However, it should be noted that the fracture pattern [10] 
does not have a distinct central point. At the same time, the examined fragmentation patterns have a central point, and 
their configuration is similar to that created with the model of diffusion-limited aggregation (DLA) [11] or the model of 
dielectric breakdown (DB) [12]. Relation (1) can be used to define the fractal dimension for both these models. In the case 
of the DB model, ( )L r  is the total length of the discharge branches within the circle of radius r  For the DLA model, 

( )L r  is the number of particles. By analogy with the DLA and DB models, to determine the fractal dimension of the 
fragmentation patterns, we use relation (1), where ( )L r  is the total length of cracks in the boxes of a size r r  centred at 
the point B  (Fig. 1b). The minimal number of the boxes used for calculation of the fractal dimension is 200. The scaling 
law obtained using the relation for the crack length (1) is presented in Fig. 2a. The processing of the fragment sizes shows 
that the relation between the fragment area and number is also fitted by a power law (Fig. 2b). 
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Figure 2: a) Scaling law obtained using the relation for crack length (1). b) Cumulative distribution of the fragment size in a log-log 
plot. 
 
There are two types of energy-dependent fragmentation patterns leading to a breakup (Fig. 3). Fig. 3a presents a 
fragmentation pattern that illustrates the fracture accompanied by radial crack formation. The right fragmentation pattern 
(Fig. 3b) has two zones corresponding to two different fracture mechanisms. The central zone has a radial crack only. In 
the second zone, the crack branching process is observed. Suppose that different fracture mechanisms characterize 
different fractal dimensions, we have 
 

 ( ) ~ DL S S            (2) 
 

where ( )L S  is the total crack length inside the square frame with a thickness h  (Fig. 3a), S  is the frame area, and D   is 
the fractal dimension. Calculation the fractal dimension using expression (2) shows that for the left fragmentation pattern 
(Fig. 3a) the data is fitted by a single line, whereas for the right pattern the log-log representation of ( )L S  changes a slope, 
and the power-law exponent D  decreases. A change in the fracture mechanism (from radial crack-to-crack branching) 
correlates with the qualitative changes in the fractal dimension. 
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Figure 3: a) Fragmentation pattern and fractal dimension definition for the fracture accompanied by radial crack formation. b) 
Fragmentation pattern and fractal dimension definition for the fracture accompanied by a change in the fracture mechanism. 
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FRAGMENTATION OF QUARTZ RODS UNDER DYNAMIC LOADING 
 
Spatial Scaling 

he fragmentation statistics was studied in recovery dynamic experiments with loaded quartz cylindrical rods using 
a ballistic set-up, which consisted of a gas gun with bore diameter of 19.3 mm, a velocity registration system and a 
base where the specimen was placed (Fig. 4). The sectional glass rod was composed of a buffer and the main part 

covered by an elastic shell. The buffer was used for realization of uniaxial loading produced by a cylindrical projectile of 
mass 13.9 g accelerated up to the velocities of 6-20 m/s. The mass of the fragments passing through the sieves was 
obtained by weighting the fragments using an electronic balance HR-202i (accuracy 10-4 g). The mass of the fragments 
corresponding to the maximum of the probability density function maxm varied in the range from 2*10-4g to 6*10-4 g (Fig. 
5a). The cumulative fragment size distribution, i.e. the number of fragments N(m) with a mass greater than a specified 
value m, was fitted by the power law (Fig. 5b). 
 

 
 

 Figure 4: Ballistic set-up. An example of the fragmentation pattern is given in the upper right-hand corner.  
 

 
(a) (b)

Figure 5: a) Probability density function (different colors correspond to different samples). b) Cumulative fragment size distribution. 
 
In order to avoid the possible influence of the reflected wave on the fragmentation scenario, the ballistic set-up was 
modified. The sample was placed into a steel cylinder filled with plastic foam (Fig. 6). The sectional glass rod was 
composed of the buffer, the main part and the outer part. The presence of the last part allowed us to catch the reflected 
wave. 
The fragmentation statistics was analyzed by varying the sample size and load intensity (projectile velocity). The results of 
experiments have indicated that the variation in the sample size and loading conditions does not lead to the change in the 
type of probability density and cumulative mass distribution functions. We have analyzed the dependence of maxm   on the 
projectile energy (Fig. 7). The markers indicate the fragmentation under different loading conditions: circles correspond to 
the fragmentation due to interaction between the direct and reflected compression waves (Fig. 4); triangles correspond to 
fragmentation under the action of a compression wave (Fig. 6); boxes correspond to fragmentation induced by a direct 
compression wave and its reverberation in rod (Fig. 9). At low energy of the projectile, a more considerable scattering was 
found for maxm . This actually means that for low energy we have two or three sieves with a comparable number of 
fragments, and for high energy - only one sieve with a predominant number of fragments. 
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Figure 6: Ballistic set-up and scheme of steel cylinder with a sample. 
 

 
Figure 7: The dependence of fragment mass corresponding to maximum probability density function on the projectile energy. 

 
Thus, the cumulative distributions illustrating the relation between the numbers of fragments and their linear dimension 
are represented as a log-log plot (Fig. 8). The linear dimension is defined as a cube root of mass or a square root of area. 

The distribution is fractal by nature with a power law in the form ( )   DN r Cr  , where N  is the number of fragments 
with a characteristic linear dimension greater than r . The fractal dimension D  varies from 1.6 to 2.0 for a plate and from 
1.1 to 1.7 for a rod. 
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Figure 8: Double logarithmic plot of the cumulative distribution function for a plate and a rod (different colors correspond to 
different samples). 
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Temporal Scaling 
As shown in the section Introduction, to confirm the fact that the fragmentation exhibits SOC, we need to establish the 
existence of a power law for temporal and spatial quantities. The evidence of the spatial scaling for the fragmentation of 
brittle materials under different loading conditions was given in two previous sections. For measurement of temporal scale 
we developed an experimental device to determine the time interval between the impulses of the light reflected from the 
newly created fracture surfaces. In our investigation (fragmentation of quartz rods under dynamic loading), SOC means 
that there exist:  
 power law distribution of fragment size; 
 power law distribution of time interval between the impulses of the light reflected from newly created surfaces. 
To obtain the fragment size distribution, the technique described in the previous experiments was used, which made it 
possible to get the distribution obeying the scaling law.  

 

 
 

Figure 9: Scheme of the experiment for measuring the distribution time interval between the impulses of the light reflected from the 
fracture surfaces. The photo of the sample illuminated with the light source. 

 
The scheme given in Fig. 9 illustrates the experimental technique used to measure the distribution of time quantities. The 
sample is illuminated with the light source. The intensity of the light reflected from the fracture surfaces is registered by 
the Photo Multiplayer Tube connected with the oscilloscope (oscilloscope sample rate is 1 GHz).  
 

 
 
 
 
 
a) 

 
 
 
 
 
 
 
b) 

 
 

Figure 10: Signal from the oscilloscope corresponding to the intensity of the light reflected from the newly created surfaces. 
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The registered signal corresponds to the change in the scattered light intensity on the interface between the fractured and 
unfractured parts of the sample. The appearance of the new surfaces produces the impulses with a sharp front. Fig. 10 
shows the signal from the oscilloscope. The bottom plot (Fig. 10b) is the total signal, and the upper plot (Fig. 10a) 
corresponds to the initial stage of the process. These two plots have different time scales. The green bar indicates the 
propagation time of the compression wave. The time during which the signal is registered is greater (6 ms) than the time of 
compression wave propagation (20 s).  
The first step of data processing is signal filtration. The definition of the size of time interval between the impulses of light 
reflected from the fracture surfaces is presented in Fig. 11. The second step involves measuring the distance between the 
green bars showing a sharp rise in impulse. We consider only the impulses which cross the red line. All the impulses below 
the red line are noise. 

 
 

Figure 11: Determination of the size of time interval between the impulses of the light reflected from the facture surfaces. 
 
The cumulative distribution function of the time interval in the double logarithmic plot (Fig. 12) is fitted by the straight 
line (total number of points 1073). At small sizes (77 points – 7.1761 % of the total number of points), the curve deviates 
from the straight line because the size of time interval is comparable with the oscilloscope sample rate (1 GHz). The 
falloff at the largest interval sizes (16 points – 1. 5% of the total number of points) is due to finite-size effects. In this case 
the time interval is comparable with the process time. The central part is the line covering 91.3% of the total number of 
points.  

 

 
 

(a) (b)
Figure 12: a) Cumulative distribution function of time interval in the double logarithmic plot. b) The signal from the oscilloscope and 
the frequency of impulse appearance. 
 
The process of light reflection looks like the process of avalanche spreading (Fig. 12b). The lower plot represents the 
event frequency. The events are distributed in blocks. We have analyzed the time interval distribution in avalanches and 
found that the distribution at the initial stage (marked in yellow in Fig. 12b) cannot be described by the power law. 
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(a) (b)
Figure 13: a) Cumulative distribution function of time interval for initial stage in a double logarithmic plot. b) Cumulative distribution 
function of time interval for initial stage in a coordinate system LN (N) –time t. 
 
The left plot in Fig. 13 illustrates the distribution at the initial stage in double logarithmic coordinates. In the right plot in 
Fig. 13, only the vertical coordinate is logarithmic. The time interval distribution is subjected to the exponential law. An 
exponential functional form requires a characteristic length scale which can be defined as 
 

chX tV            (3) 
 

where chX is the characteristic size, t is the x-coordinate of point C (t= 457 ns), and V = 5800 m/s is the sound velocity in 

quartz. We suppose that this length scale 62.6 10 chX m correlates with the characteristic length scale of structure 
heterogeneity of quartz (Fig. 14). This problem will be the object of our future research. The initial stage statistics does 
not change the total statistics, because only 10% of the points belong to the initial stage. 

 

  
 

(a) (b) 
 

Figure 14: Fracture surface of quartz. Optical microscopy. 
 
CONCLUSION 
 

xperimental investigations have been carried out to examine the fragmentation of brittle materials under quasi-
static and dynamic loading conditions. Based on the obtained results, we can conclude: 
 fragmentation patterns of glass plates are fractal; 

 variation in the fracture mechanism of plates correlates with the changes in the fractal dimension;  
 fragment size distribution for the observed type of fragmentation is fractal and satisfies the relation  ( ) DN r Cr   
 fragment size distributions and time interval distributions show evidence of obeying scaling laws, which suggests the 

possibility of self-organized criticality in fragmentation.
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ABSTRACT. The computational method of optimum fractional composition of a dispersible filler of polymeric 
composite on the basis of three-dimensionally linked elastomer is developed according to non-linear 
programming. The coefficient of dynamic viscosity of polymeric suspension or the initial module of a 
viscoelasticity of the join solidification low-molecular rubbers with the final functional groups, filled by many 
fractional dioxide of silicon are considered as criteria of optimization. Influence of the limiting volume filling on 
energy of mechanical destruction was investigated. The elastomeric material is offered for use as a covering of 
asphalt highways in the form of a frost-proof waterproofing layer, which allowing multiply to increase operating 
properties. 
 
KEYWORDS. Viscosity; Mechanical destruction; Elastomeric composites with a dispersed filler; Rheology; 
Rubber; Polymeric binder; Asphalt highways. 
 
 
 
INTRODUCTION 
 

ractional composition of a dispersed filler is essential for formation of rheological behavior of suspensions on the 
basis of fluid and viscid polymeric binding and mechanical characteristics of three-dimensionally linked filled 
elastomers. At the same time the major parameter of composition is effective extent of volume filling – / m  , 

herein  – volume proportion of solids of an filler, m – the limiting extent of volume filling depending on a form of 
particles and their distribution by the size, and also from physical and chemical interaction on border "a filler - a binder". 
Value m  can be defined by the viscometric method  [1] or calculated by a combinatorial and multiplicative method [2]. 

Coefficient of dynamic viscosity   and the initial module of a viscoelasticity 
d

E ,( 1)
d

with
 


  are connected by a ratio 

(1):  
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/
1 1.25

1 /
f f m

r r
o o m

E
E

E

  
  

 
      

       (1) 

 

herein the "f" and "o" indexes fall into to the filled and free conditions of the polymeric binding. 
Energy (work) of destruction was estimated in the form of the envelope by curve of destruction [4]  dependences of the 
conditional ultimate break tension b (tension divided by the initial section of the sample)  from break deformation b , 

bound to degree of the relative elongation by ratio 1 /100%b b   .  The line envelopes of around points of a break of 

exemplars and constructed in logarithmic scale (log log )b b  , corresponds to energy of mechanical destruction in the 
form of the area of the chart of stretching in Cartesian coordinates:  
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1

( )
b

bA d


               (2)   

herein structural and mechanical dependence of the conditional tension  from elongations extent  on condition of lack 
by abruption of particles of an filler from elastomeric binder, (for example, covering for asphalt), is proved by us earlier 
[5]:  
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herein:  
/ch cM  : molar concentration of transversal chemical bonds in a polymeric basis a binder (  – polymer density, cM  

– an average statistical molecular mass);  

r : volume ratio of polymer in binder, containing softener;  
R : universal gas constant;  
T : equilibrium temperature at which concentration of transversal "physical" (intermolecular) communications ph  is 

negligible;  
T : test temperature of an exemplar;  

gT : temperature of a structural glass transition of the polymeric binding;  

a : coefficient of high-speed mixing -3 1( 1 , 1.4 10  -standart for applications)a s      ;  
 : volume ratio of a dispersible filler;  

m : the limiting extent of volume filling of the elastomers, depending on a form and fractional composition of particles, 
and also from physical and chemical interaction on border "a filler - a binder".  
Value m  can be defined by the viscometric method [1] or calculated by a combinatorial and multiplicative method [2]. 

Value b in the Eq. (2), as well as b , searched with the help of Eq.  (4): 
 

3 3 3(1 / ) / ;    (1 / )f o f o
b b m m b b m                       (4)   

 

herein the "f" and "o" indexes fall into to the filled and free conditions of an elastomer. 
Breaking deformation of a elastomeric binder o

b , defining by efficiency concentration of cross-links ( )eff ch ph    , was 

set experimentally [5].  
Research objective were development of a method of optimization of fractional composition of a dispersed filler for 
creation of a frost-proof waterproof elastomeric materials for covering for asphalt highways located in zones with sharply 
continental climate in  form of rolled. 
 
 
THEORETICAL STUDY 
 

he problem of optimization of fractional composition of dispersible components of a polymeric material (for the 
given weight average particle sizes of fractions) taking into account realization of a condition of an optimality on 
other production characteristics can be formulated in the form of the formulation of a non-linear programming: 
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herein   

,  ,  q d
 

: vectors of volume fractions, sponginess and particle sizes of fractions of dispersible components as a part of a 
polymeric material respectively;  

opt
j : optimum volume fractions of fraction an filler in structure;  

jv : volume fraction  

v : fraction by j -type an filler in structure;  

jm : number of j-type fractions of a dispersed component; 
min max,  jv jv  : respectively the lower and upper bounds for volume fractions of fractions of solid components in structure; 
opt
jx : optimum for the corresponding block of characteristics, for example, mechanical, mass concentration of firm 

disperse components in polymeric composition; 

j : density of disperse components;  

nI : a set of the indexes belonging to types of a filler, entering into a compounding of a polymeric material. 
In view of complexity, the task includes restrictions such as equalities, will be transformed to a problem of nonlinear 
programming with restrictions such as inequalities. The quantity of independent optimized variables is equal ( )jn m m  , 

herein   
m : number of types of solid components by a polymeric material.  
Thus normalizing ratio in case of the solution of a task is carried out automatically.   
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Further the vector of optimum volume fractions of fractions of filler in composition is defined:  
 

( ;  );    1,  2,  3,  ...,  
opt opt

jv j n jI v m    


 

herein  
opt
jv : an optimum volume fraction  

v : fraction by j -type a filler. 
Transition to optimum mass concentration of the relevant fractions of firm components  
 

( ;  ;  1,  2, 3, ...,  ) opt opt
j jv j n jx x I v m    

 
 

is carried out on a formula: ( )/ ( / )opt opt opt
jv jv j j jx P      

herein 
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P x x
  

   is the sum of mass concentration (shares) of solid components by a polymeric 

compositing.   
 
 
EXPERIMENTAL STUDY 
 

haracteristics used a fraction of silica as a dispersed filler for slurry on based low-molecular rubbers (oligomers) 
with final epoxy groups polydienurethanepoxide (trademark PDI-3B) and carboxyl groups 
polybutadiencarbocsilate (trademark SKD-CTR) are shown in Tab. 1. 

Surface by response  of function in the projection in the chart Gibbs "composition-property" (Fig. 1), which we obtained 
by the developed computer program [3], demonstrates the calculated dependence of value /r f o    the investigated 

polymer   slurry from the volume ratio of the three fractions of silica, differing characteristics in accordance with Tab. 1. 
Constant volume fraction of filler is 0.75. In all cases, the calculation of the limit of bulk fill m , through the coefficients 
of the porosity of various mixtures of fractions implemented with help by the coefficients of the porosity of individual 
fractions identified viscometric method [1]. At the same time physical and chemical factors influencing the limiting filling 
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of a polymeric binder takes into account "automatically", according to the physical nature of  viscosimetric method. It can 
be seen that the minimum value of the relative coefficient dynamic viscosity r  is provided an optimal ratio of volume 

fractions of fractions (rounded): 600µ  30µ  1µ = 0.5: 0.3: 0.2. It shows also the experimental values r . 
 

Characteristics 1 (small) 2 (medium) 3 (large) 

Porosity 
(volume fraction of pores) 

0.450 0.384 0.379 

Void ratio 
(the ratio of the volume fractions 

of pores and particles) 
0.818 0.623 0.610 

Weight average particle size, µ 1 30 600 
 

Table 1: Characteristics fractions of silica. 
 

 
Figure 1: The calculated and experimental dependences of the relative dynamic viscosity polymer slurry based by 
polydinurethanepoxide (PDI-3B) and polybutadiencarboxilate (SKD-CTR) from  volumetric ratios of 3 fractions of silica: A, B - levels 
calculated iso-viscosity, round icons - experimental data. 
 

  
 

Figure 2: Envelopes by points of destruction [σb (MPa) = f [εb (%)] (in logarithmic scale) of the samples elastomer filled bifraction 
(black symbols) silica three fraction (white symbols) of silica: 

 a sample of T = 323 K  the standard T = 323 K
 a sample of T = 223 K  the standard T = 293 K
 a sample of T = 293 K  the standard T = 223 K
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Experimental study of prescription's parameter / m   filled elastomer at strain-strength characteristics, expressed in the 
form of envelopes by destruction was carried out using silica  the following fractional composition:  

1 - initial test sample - (240: 5) µ = (20: 80)%  
2 - prototype - (240: 5: 1) µ = (40: 40: 20%). 

As the polymer binder used stoichiometric mixture (1: 2 moles) of low molecular weight rubber trademarks PDI-3B and 
SKD-CTR, three-dimensionally cross-linked three-functional aromatic epoxy resin trademark EET-1 (1 mol). Specific 
surface area of contact "filler-binder" in both cases remained constant. 
Indication in Fig. 2 (with the normal motion from the lower to the upper right) shows that at a fixed value of the volume 
fraction of silica 0.712  modified effective volumetric filling / m   from 0.712 / 0.752 = 0.946 to 0.712 / 0.816 = 0.72 
leads to an increase in the energy by mechanical destruction by elastomeric composite 1.5 - 1.7 times. Reducing the 
maximum degree of volume filling from 0.946 to 0.872 promotes increase "return" of the polymeric binder in the growth 
of energy mechanical destruction elastomer composite in accordance with the mathematical relationship (2, 3, 4). [5]. 
Thus, the use by optimal multifractional  filler for constant chemical composition of the composition allows for increase 
significantly  in service life of the studied composite material which offered as frost-resistant waterproof covering (oil-
fired sub-layer) for asphalt highways located in areas with sharply continental climate. 
Use as frost-resistant waterproofing covering which filled three-dimensional cross-linked elastomer, provides an elastically 
deformability surface of the road-load transport in the temperature range of 223 K ... 323 K (-50 ... +50 ° C); this prevents 
the massive destruction of asphalt at alternating temperatures and operating loads at the expense of phase transitions' 
water-ice-water ", which accompanied by a volume expansion of ice when water freezes in the initial cracks of asphalt. 
The following is an example of the engineering realization of recommended  material.  
 The composition contains: A polymer  binder (in the ratio 1: 2) polydienurethanepoxide with final epoxy groups 

(PDI-3B) and  polybutadiencarbocsilate with a terminal carboxyl groups (SKD-KTR) (13.5 wt.%),  
 Natural macro crystalline quartz (57.4 wt.%); Fumed silica grade "Aerosil-380" (24.6 wt.%),  
 Processing aids: thixotropic amplifier of elastomer and pigment - technical carbon (3.0 wt.%), three-dimensional 

cross-linking agent - epoxy gum brand EET-1 (1.45 wt.%), three-dimensional crosslinking catalyst - acetolacetonate 
Fe (0,05 wt.%). 

 Blending components conducted at 55 - 60 ° C in a continuous mixer such as "SND-75", followed by formation of 
canvas width 3.0 meters and a thickness of 0.012 m (12 mm). Three-dimensional cross-linking the polymer base 
material was conducted out in a continuous drum-vulcanizer at a temperature 170 - 180 ° C with a residence time in 
the apparatus 7-5 minutes respectively. received  and rolled from rolls (25 meters long each) on the asphalt, smearing 
by liquid bitumen (oil), waterproof canvas with a relative speed of uniaxial tension 1.4 • 10-3 s-1 had the following 
mechanical characteristics specified in Tab. 2. In the same part of the recommended composition based on a three-
dimensional cross-linked elastomer filled three-fraction silica. 

Such a roll material  on intermediate "glue" layer of liquid bitumen (oil), is to protect the asphalt canvas based on 
bituminous binder, becoming brittle in the cold, from the ravages of a pair of "water - ice" These characteristics indicate 
on increased frost-resistant developed coating of asphalt highways and you can use it in a wide temperature range for 20 ... 
30 years. 
 

Composition 
Volume 
fractions 

Mechanical properties 
323 К 293 К 223 К 

Polimeric binder: 
Rubber SKD-CTR; 

Rubber PDI-3B; 
Epoxy EET-1 

 
0.288 

 
 
 

0.712 

σb, МPа 

0.25 

εb, % 

55 

σb, МPа 

1.20 

εb, % 

32 

σb, МPа 

6.00 

εb, % 

22 

 
 
 

 
 
 

 
 
 

 
 

 
 
 

 
 
 Filler: 

Silica 
(240:5:1) µ = (40:40:20)% 

 

Table 2: Mechanical characteristics of composition. 
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CONCLUSIONS 
 

ased on non-linear programming was developed mathematical optimization method of fractional composition of 
the disperse filler, which significantly affects the coefficient of dynamic viscosity of the suspension and the energy 
of mechanical destruction three dimensional cross-linked elastomeric composite. Also was proposed formulation 

of the polymer compositions based on low molecular rubbers with final functional groups, filled with silica optimal 
fractional composition, allowing increase the service life of asphalt highways. In relation of frost-resistance and 
waterproofing of the created coating based of the filled elastomer, engineering example shows the practical effectiveness 
of the proposed method to increase the service life of asphalt highways. 
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ABSTRACT. An approach to multiscale description of deformation and fracture of brittle porous materials on 
the basis of movable cellular automaton method was proposed. The material characterized by pore size 
distribution function having two maxima was considered. The core of the proposed approach consists in 
finding the automaton effective response function by means of direct numerical simulation of representative 
volume of the porous material. A hierarchical two-scale model of mechanical behavior of ceramics under 
compression and shear loading was developed. Zirconia based ceramics with pore size greater than the average 
grain size was considered. At the first scale of the model only small pores (corresponding to the first maximum 
of the pore size distribution function) were taking into account explicitly (by removing automata from the initial 
structure). The representative volume and effective elastic properties of the porous material at this scale were 
evaluated. At the second scale of the model, big pores were taking into account explicitly, the parameters of the 
matrix corresponded to the ones determined at the first scale. Simulation results showed that the proposed 
multiscale model allows qualitatively and quantitatively correct describing of deformation and fracture of brittle 
material with hierarchical porous structure. 
 
KEYWORDS. Deformation and fracture; Brittle materials; Porous ceramics; 2D modeling; Particle-based 
approach, Movable cellular automaton method. 
 
 
 
INTRODUCTION 
 

t is well known that real porous materials are characterized by hierarchical pore structure and complex mechanical 
behavior, including fracture [1-3]. To study and describe these materials the information about the relationship of 
their structure and mechanical properties at various scales is needed. One of the ways of getting this information is 

numerical simulation. In the framework of one-scale approach direct taking into account all peculiarities of structure and 
mechanical behavior of a material at each scale seems to be impossible. Therefore the goal of this paper is development of 
the multiscale approach, represented in [4], and construction of the corresponding hierarchical model for describing 
deformation and fracture of nanostructured porous ceramics under compression and shear on the basis of movable 
cellular automaton method (MCA). Detailed description of the MCA method can be found in paper [5] published in this 
issue of the journal. Note, that this method have been chosen because it has successfully proved itself in studying 
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mechanical behavior of brittle porous materials from initiation of the first damages till cracks propagation and complete 
failure [6-9]. The calculations were carried out for a model material having mechanical properties of nanocrystalline 
ZrO2(Y2O3) (yttria-stabilized zirconia) with the average pore size greater than the average grain size and two maxima in its 
pore size distribution function [2, 3].  
The hierarchical model of the material with properties of the ceramics under consideration was constructed in several 
stages. At the first stage, the response of the ceramic material at the microscale (20÷250 μm) was simulated with explicit 
taking into account the porous structure of the material under various types of mechanical loading and the representative 
volume of this scale was determined. The result of the first stage was determination of the response function parameters 
of macroscale movable automata, corresponding to representative volume of the microscale. At the second stage, similar 
calculations were carried out at the macroscale with explicit taking into account of the porous structure of this scale. Data 
on the porous structure of lower scale were allowed for in the effective automata response functions defined at the first 
stage. At the final third stage, qualitative and quantitative verification of the developed model at the macroscale was made 
including comparison of simulation and experimental data. 
 
 
DETERMINING THE REPRESENTATIVE VOLUME OF THE MICROSCALE AND THE MACROSCALE EFFECTIVE 

RESPONSE FUNCTION  
 

t the microscale of the proposed model, the representative volume is determined by analyzing the convergence of 
elastic and strength characteristics of porous model specimens with an increase in their dimension. Modeling of 
six groups of porous ceramics specimens under uniaxial compression and simple shear was performed. All the 

specimens in each group had the same dimension, but different pore distribution in space. Each group was consisted of 
six plane square specimens. Specimens under consideration had dimension (square side) of 20, 60, 100, 150, 200 and 
250 μm according to the groups. It was supposed that all pores in the ceramics under investigation, as well as the model 
material, were equiaxed. The pore size of the model material, according to the maximum of the ceramics pore size 
distribution function, was equal to 3 μm [2, 3]. Diameter of the movable cellular automata, according to the average grain 
size, was equal to 1 μm [2, 3]. The pore structure of the specimens was specified by randomly removing individual 
automata and their six nearest neighbors. The total porosity for all the specimens was equal to 7% [2, 3]. Typical initial 
structure of one of the model specimens is shown in Fig. 1. 
 

 
                                              (a)                                               (b)                                                     (c) 
 

Figure 1: Initial structure of a model specimen with a size of h = 60 μm and scheme of loading for shear (a) and uniaxial compression (b); the plot of 
velocity vs time for the upper automaton layer of the specimen (c). 
 
The shear loading was simulated by setting up one and the same horizontal velocity to all automata in the upper layer with 
automata of the lower layer being rigidly fixed (Fig. 1,a,c). At the initial stage, the velocity of automata of the upper layer 
was increased by the sinusoidal law from 0 to 1 m/s and then was assumed to be constant. This scheme ensured a quasi-
steady regime of loading and allowed dynamic effects to be eliminated until the first damage appeared. Duration of the 
loading velocity increase depended on the size of the specimen and was determined by preliminary calculations. All the 
samples had periodic boundary conditions in the direction of shear loading. The uniaxial compression loading was 
simulated by setting up one and the same velocity in vertical direction (up to 1 m/s) to all automata in the upper layer 
(Fig. 1,b,c). The vertical velocity of automata in the lower layer were set to zero. Displacements in horizontal direction 
were allowed for automata in the both lower and upper layers. The lateral surfaces of the specimen were free. The 
problem was solved under plane strain conditions. The response function of automata corresponded to the loading 
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diagram for nanocrystalline ZrO2(Y2O3) with total porosity of 2% and an average pore size to be equal about the grain 
size [2, 3]. Shear modulus G and Poisson ratio ν of the movable cellular automaton were equal to 59.2 GPa and 0.3 
correspondingly. Inter-automaton bond rupture criterion used in calculations was formulated as a threshold value for 
intensity of shear stresses [10]. 
 

 
                                                                   (a)                                                                     (b)                                                                     

 
                                                                   (c)                                                                     (d)                                                                     

 

Figure 2: Relative deviation of compression modulus Eeff, shear modulus Geff, compression strength σc and shear strength τc of the 
model specimens from the corresponding mean values <Eeff>, <Geff>, <σc>, <τc> under uniaxial compression (a, b) and shear (c, d). 

 
Convergence analysis of mechanical properties for the porous model specimens with increase of their size was performed 
in terms of estimated deviation of effective elastic and strength properties of the specimens (modulus of compression Eeff, 
shear modulus Geff, compression strength σc and shear strength τc obtained from simulated loading diagram) from the 
corresponding mean values in the groups <Eeff>, <Geff>, <σc> and <τc>. The specimen size for which the deviation did 
not exceed 3% for Eeff, Geff and 15% for σc, τc was accepted as the size of representative volume. The results of simulation 
(Fig. 2) showed nonlinear convergence of strength and elastic properties of the model specimens. For the model specimens 
with the side of 150 μm relative deviations of Eeff , Geff, σc and τc from the corresponding group average values were 0.51, 
0.38, 6.0 and 7.6% correspondingly. These values did not exceed the prescribed limits. Thus, it proved that the porous 
specimens with dimension of 150 μm are representative volumes of the model material under consideration. The values of 
<Eeff> and <σc> were taken as the parameters of response function of automata at macroscopic scale. Slight deviations of 
these values (−9.5 % and 36.0 %) from ones evaluated experimentally are related with two-dimensional formulation of the 
problem and incomplete correspondence of the model pore morphology with the one of real ceramics. Therefore the 
corresponding characteristics of response function were corrected by means of the correction ratio. The conversion from 
the elastic modulus determined from the loading diagram under plane strain conditions EPSS to the Young's modulus was 
based on the ratio )1( 2 PSSEE  [11]. 
 

SIMULATIONS AT MACROSCALE  

 
t macroscale the calculations were carried out for nine square porous specimens with the dimension of 22.5 mm. 
According to the representative volume determined at the previous stage the diameter of movable cellular 
automata at this scale was equal to 150 μm. The information about structure and strength properties of the A 
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material was transferred from micro- to macroscale by means of the response function with the parameter values 
corresponding to the loading diagrams of the representative volume of the material at microscale. The response function 
of automata was chosen to be a linear one and characterized by two parameters: the maximal value of specific resistance 
force (corresponded to strength limit) and the elastic parameter (corresponded to Young’s modulus). The values of these 
parameters determined at the first stage were found to be equal to 846 MPa and 112 GPa correspondingly. Explicit setting 
up of pore structure of the material at macroscale scale, loading conditions and assumption about stress state were similar 
with that of the first stage. According to the pore size distribution function the explicit porosity of the macroscale 
specimens was equal to 28% and the pore size was equal to 450 μm [2, 3].  
 
 
VERIFICATION OF THE MODEL  
 

et us assume the model to be successfully verified (i.e. the model represents the main features of the ceramics 
under investigation) if the simulation results satisfy the following criteria: 1) the loading diagram of the modeled 
specimen is linear in elastic region and contains horizontal section corresponding to quasi-ductile fracture for 

porosity greater than 20 %; 2) qualitative correspondence of the fracture patterns of the modeled specimens to real 
ceramics; 3) strength properties of the modeled specimens belong to a certain value interval found from experimental 
data. 
The loading diagrams which are typical for all the model specimens in case of different types of mechanical loading are 
presented in Fig. 3. On these diagrams one can see several parts. The first linear part, corresponding to elastic 
deformation of the specimen, is typical for brittle materials with any value of porosity. The next part is still ascending but 
insignificantly, it also contains multiple stress “oscillations” (only under uniaxial compression, Fig. 3, a). This part 
corresponds to repetitive processes of damage generation, local cracking and subsequent elastic deformation of the 
material all over the entire specimen. The last part of the diagram is descending. It corresponds to macrocrack 
propagation as well as generation of separate multiple damages. In shear loading (Fig. 3, b) one can see another ascending 
sections of the curve with breakdowns and subsequent drop-down on the plotted diagram after the above mentioned 
parts. Under constrained deformation conditions, it is to these portions of the diagram that the development of a system 
of macrocracks in the specimen corresponds, and the first descending portion corresponds to nonrecurring generation of 
damages throughout the entire specimen and their development without the formation of a system of macrocracks. 

 

        
 

                                                                   (a)                                                                                (b)                   
                                                   

Figure 3: Loading diagrams of the model specimen with dimension of 22.5 mm under uniaxial compression (a) and shear loading (b). 
 
It should be noted, that the horizontal plateau on the compression diagram of the brittle specimens (Fig. 3, a) reveals their 
quasi-ductile fracture, which occurs only when porosity of the specimen is greater than 20% [9]. The extent to which these 
properties show up is proportional to the length of the given portion (plateau) and is different for different model 
specimens. A decrease in the length of this diagram portion points to the proximity of fracture to brittle fracture. It would 
appear reasonable that both the transition to quasi-ductile fracture and the extent to which it develops are determined by 
certain critical local porosity of the specimens. The critical local porosity is associated, in particular, with the total 
specimen porosity and with the pore shape and size. It is worthy of note that quasi-ductile fracture in this case is 
completely determined by the geometric factor, because the model takes into account neither phase transitions, nor 
rearrangement of the material lattice. 
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Typical loading diagrams of brittle porous solids under shear and uniaxial compression are presented in Fig. 4 [2, 9]. 
Comparison of the diagrams in Fig. 3 with corresponding diagrams of brittle porous solids in shear and uniaxial 
compression [2, 9] shows their good qualitative agreement. Thus, the first macroscale criterion of model verification, 
which is in the loading diagram correlation, is fulfilled. 
Typical fracture pattern of the model specimens, represented as inter-automaton bond net at the time of first macrocrack 
propagation, are shown in Fig. 5. Under uniaxial compression the specimen failure occurred due to generating therein the 
asymmetrical system of macrocracks with complex propagation path. In addition, generation of multiple separated 
fracture regions took place near the macrocracks. 

 

 
 

(a) 
 

 
 

                                                                   (b)                                                                          (c)                   
 

Figure 4: Experimental loading diagrams of ZrO2 ceramic specimen with different value of porosity under uniaxial compression (a) [2] 
and corresponding diagrams obtained from numerical simulation (b and c) [9]. 
 

                
(a)         (b) 

Figure 5: Fracture patterns of the model specimen with the porosity of 28 % at the moment of the first macrocrack propagation under 
uniaxial compression (a) and shear loading (b). 
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In the case of quasi-ductile fracture (Fig. 3, a) damage generation and crack growth occurred locally, in several regions of 
the sample, characterized by the highest value of local porosity (and the least thickness of web between isolated pores). 
Until a certain moment, some cracks were not merged into main crack, the stage of its growth were somehow elongated. 
It led to extensive local cracking of the material without losing the integrity of the sample and, consequently, to a 
substantial dissipation of elastic energy and decreasing of the effective elastic properties of the material (of the whole 
specimen). Thus, the second criterion of the constructed model verification is fulfilled. 
To verify the third criterion of the model verification the average value of the effective elastic modulus (<Eeff>) and 
maximum specific resistance force to loading under uniaxial compression were calculated. Then they were compared with 
the corresponding values found from real experiments. It was shown that the deviation of <σs_eff> and <Eeff> for the 
model samples from the experimental data did not exceed 30 % and 12 %, respectively. It is a rather good accuracy for 
simulating highly porous media in plane approximation. This indicates to a good quantitative agreement of the 
calculations and the experiment and means that the third criterion of the model verification is fulfilled.  
Thus, a two-scale model of porous ceramics with bimodal pore size distribution function was constructed herein based on 
a multiscale approach to numerical simulation and validated against available experimental data. 
 
 

CONCLUSIONS  
 

 multiscale approach to numerical simulation of porous materials is developed on the basis of movable cellular 
automaton method. The hierarchical two-scale model constructed using the proposed approach can adequately 
describe deformation and fracture of the porous zirconia ceramics under mechanical loading. Since the proposed 

approach is sufficiently general, then, if it is necessary, a heterogeneous material containing more than two structural 
scales can be also simulated on the basis of this approach. 
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ABSTRACT. The work is devoted to the experimental study of heat dissipation caused by plastic deformation 
and failure processes taking place in a titanium alloy Ti-4.2Al-1.6Mn. To investigate the spatial and time 
evolution of temperature, a set of experiments has been carried out on plane titanium smooth specimens and 
specimens with pre-grown centered fatigue cracks. The original mathematical algorithm for experimental data 
processing has been applied to obtain the rate of heat dissipation generated by plastic deformation and stored 
energy. It is shown that the stored energy is accumulated in titanium specimens undergoing fatigue tests, and at 
the time of damage to fracture transition it is equal to zero. 
 
KEYWORDS. Heat dissipation; Infrared thermography; Stored energy. 
 
 
 
INTRODUCTION 
 

t is well known that real metals have a complex structure, which is a hierarchy of different scale levels [1, 2]. Under 
deformation, the structural evolution is observed at all scale levels and leads to irreversible deformation and failure 
that is accompanied by energy accumulation and dissipation. Investigation of thermodynamics of deformation and 

failure is a key issue in solid mechanics. These studies allow one to develop a universal material failure criterion for 
estimating different stress-strain states (including multi-axial ones) and loading histories. 
The experimental and theoretical study of the energy balance during deformation is based on an extensive bibliography. 
The importance of this problem was originally shown by J. H. Lambert in 1779 in his work concerning the energy 
similarity of mechanical and thermal failure processes of solids. The essence of this similarity is that the mechanical failure 
of metals can occur when the relative deformation in at least one direction reaches a value equal to the linear thermal 
expansion at the melting point. A substantial contribution to the development of these ideas was made by V.S. Ivanova, 
who proposed the structure-energy theory of metal fracture [3]. A detailed analysis of thermodynamic effects produced by 
cyclic deformation and failure in metals was carried out by V.T. Troshchenko and V.V. Fedorov. A review of strength 
energy criteria was given in [4, 5]. 
To analyze the thermodynamic characteristics of deformation processes in solids, it is necessary to take into account the 
fact that the plastic deformation work is converted into two parts: heat energy caused by the movement and annihilation 
of defects at various structural levels, and hidden (stored) energy of plastic deformation accumulated in the elastic fields of 
defects. The energy is dissipated in the surrounding environment by conduction, convection and radiation and also stored 
in the material as thermal energy that increases due to the self-heating effect. 
The main difficulty encountered in the analysis of deformation and failure processes is a choice of thermodynamic 
parameters required to determine the exhaustion degree of material deformability. In work [5] published in 1979, it was 
experimentally shown that an endurance limit can be determined by using almost any thermodynamic characteristics of 
the process: inelastic deformation per one load cycle, irreversibly consumed energy per one load cycle, self-heating 
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temperature, energy dissipation rate, and energy storage rate. For a more rapid determination of the endurance limits of 
metals, the author proposed two types of tests: a slowly increasing load (stress) amplitude test and a block amplitude test 
(used more often today). In the beginning of 1970th, V. Fedorov developed an original experimental setup that permitted 
him to control the heat dissipation and to measure the temperature of the specimen under cyclic loading. 
The analysis of the experimental studies carried out in USSR in 1970-1980 has led us to the conclusion that the obtained 
parameters are indirect and thus cannot be used as a basis for the development of the universal material failure criteria. 
For example, it is experimentally shown [5] that the thermal energy dissipated during the cyclic deformation of specimens 
made from 40X, 2X10, 25, 45 steels (Russian marking) may have very different values [5]. Conversely, the value of the 
stored energy during deformation is independent of loading conditions and correlates, at the time of failure, with the value 
of enthalpy of the material in a liquid state at melting temperature. 
With the advent of infrared cameras it became possible to significantly simplify the schemes of experiments and to 
accelerate the determination of fatigue limits of materials [6-8]. Infrared thermography allows one to measure, in real time, 
the temperature of materials under deformation and to calculate the thermal energy of specimens and the rate of heat 
dissipation. 
Investigation of the energy accumulation process in metals at different loading conditions was carried out over the entire 
20th century. The review of experimental works devoted to the methods of studying the stored energy in the material 
under deformation and the peculiarities of this process for different materials and load conditions is available in [9]. 
Currently, it has been convincingly shown that the ratio of the energy storage rate to the plastic work rate can reach a 
value of 0.3-0.4 at the initial stages of plastic deformation process [10, 11]. 
The aforementioned experimental results indicate the importance of further development of methods for investigation of 
the thermodynamic parameters of the deformation process. At present, infrared thermography is one of the most 
promising techniques for thermodynamic measurements; it requires no changes in the standard schemes of mechanical 
testing.  
One of the main problems facing scientists today is the development and realization of mathematical methods for 
experimental data processing, including noise filtering for temperature measurements based on infrared radiation data, 
elimination of external effects during the experiments (reflection of infrared waves from the metal specimen surface, 
relative motion of a specimen, etc.), and calculation of heat losses in the course of the experiment. The major goal of such 
experimental data processing is to provide a solution to the inverse problem and to evaluate the heat source evolution 
caused by the structure evolution in the material. A comparison of these data with the results of mechanical tests will 
enable one to determine the value of stored energy and to propose a local material failure criterion. This criterion can be 
applied for calculation of the stored energy value and determination of the moment at which this parameter is equal to 
zero, that is, the time of local material failure. In the present paper, the proposed criterion is used in the analysis of stress 
field and energy dissipation at the fatigue crack tip. 
 
 
MATERIALS AND CONDITIONS OF EXPERIMENT 

 
he experimental study of temperature evolution at the fatigue crack tip was carried out on the two types of the 
plane specimens of titanium alloy. The chemical composition of the material is presented in Tab. 1. Experiments 
were made on smooth specimens and specimens weakened by holes to initiate fatigue cracks in the center of the 

specimen. The specimens were manufactured from a titanium sheet 3 mm thick. The mechanical properties of the 
materials were determined based on the original experiment. Mechanical tests were carried out using a 100 kN servo-
hydraulic machine Bi-00-100. The mechanical properties and fatigue loading conditions are presented in Tab. 2. The 
geometry of specimens is shown in Fig. 1. 

 

Al Zr Si Fe O H N C Mn 

3.68 0.3 0.12 0.3 0.15 0.012 0.05 0.1 1.16 
 

Table 1: The chemical composition of titanium alloy(%). 
 

Modulus of 
elasticity Yield stress Ultimate 

stress 
Fatigue 

limit 
Fracture 

toughness Pmin Pmax 
Stress 
ratio 

64 GPa 800 MPa 900 MPa 460 MPa 75.6 МРа√m -18.7 MPa 367 MPa -0.051 
 

Table 2: The mechanical properties of Ti-4.2Al-1.6Mn and fatigue loading conditions. 

T 

http://dx.medra.org/10.3221/IGF-ESIS.24.08&auth=true
http://www.gruppofrattura.it


 

                                                            A.Yu. Fedorova et alii, Frattura ed Integrità Strutturale, 24 (2013) 81-88; DOI: 10.3221/IGF-ESIS.24.08 
 

83 
 

The test conditions comply with the conditions of the experiment described in detail in [12]. Investigation of the heat 
source evolution was carried out on the smooth specimens during a quasi-static tensile test. Crack propagation was 
studied at loading frequency of 5 Hz and 10 Hz.  The temperature evolution was recorded by an infrared camera FLIR SC 
5000. The spectral range of the camera is 3-5 mm. The maximum frame size is 320×256 pixels; the spatial resolution is 10-

4 meters. The temperature sensitivity is from 25 mK to 300 K. 
 

               
    (a)                                                                                                  (b)  

 

Figure 1: Geometry of specimen (a – smooth specimen, b – specimen with a hole). All sizes are in millimeters. 
 
 

EXPERIMENTAL DATA PROCESSING AND STORED ENERGY DETERMINATION  
 

Post experimental data processing  
t the beginning of the data processing procedure, the first frame was subtracted from the film to eliminate the 
influence of infrared camera lens radiation on the temperature field. To increase data accuracy and to eliminate 
the influence of random temperature fluctuations, the spatially fixed temperature signal of the smooth specimen 

was processed using the two-dimensional discrete Fourier transform with a standard Gaussian kernel [13]. The result of 
such data processing used to calculate the heat source field is illustrated in Fig. 2. 
The relative motion of the specimen with cracks and the infrared camera lens observed in cyclic tests causes the problem 
of motion compensation, which should be overcome to obtain the correct temperature data at the given point on the 
specimen surface. To compensate this relative motion, the algorithm described in detail in [13] was used. The main idea of 
the algorithm consists in finding a marker zone on the examined surface and searching for this area on the surface in each 
time step. Further, the displacement of every point on the surface is calculated for each time step. The data processing 
yielded the temperature increment field (Fig. 3), which was used to determine the heat source field. 
 
 

 
       (a)                                                          (b) 

 

Figure 2: Infrared image of the smooth specimen before data processing (a) and the obtained temperature change field (b). 
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       (a)                                                          (b) 

Figure 3: Infrared image of the specimen with crack before data processing (a) and the obtained temperature increment field (b). 
 
Calculation of stored energy under quasistatic loading 
To calculate the specific power of heat source, we have used the finite difference scheme of equation (1) for heat source 
evolution 
 

 


     
 
 T

s c T k T            (1) 

 

where T is the temperature, ρ is the density (4550 kg/m3), c is the heat capacity (600 J/(kg·K)), k is  the heat conductivity 
(6.5 W/(m·K)), s is the unknown specific power of heat source (W/m3), and τ is the constant corresponding to the heat 
loss due to heat exchange with the surroundings (103 J/(m3·K)). 
The power of heat source at time close to fracture is shown in Fig. 4. The plastic zone is localized on the surface of the 
smooth specimen (Fig. 4a). Fig. 4b presents the last moments before fracture of the specimen with crack; one can observe 
strong plastic deformation at the crack tip, and the plastic zone has the form of a “butterfly”. 
Here we also use the assumption [14, 15] that some of the irreversible plastic work contributes to heat generation, while 
the rest is stored as the energy of crystal defects accompanying plastic deformation, traditionally known as the stored 
energy of cold work.  
 

 
                                                    (a)                                                                    (b) 
 

Figure 4: Experimental data for the heat power field near the crack tip at the beginning of unstable crack propagation. 
 

For plane specimens without crack the plastic work under quasi-static tensile loading is calculated using the experimental 
data obtained for the applied force F(t) and the deformation velocity V: 
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 ( ) ( )quasi
pW t F t V            (2) 

 

The power of heat source is integrated over the plastic localization zone, and the heat dissipation energy is defined by the 
equation 
 

22

1 1

( ) ( , , )  
yx

quasi

x y

Q t s x y t dxdy           (3) 

 

where 1 2 1 2, , ,x x y y are the rectangular coordinates of the plastic deformation zone.  
The stored energy is determined as a difference between the plastic work and the heat dissipation energy. The results of 
calculation are presented in Fig. 5. 
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Figure 5: Time dependence of plastic work, heat dissipation energy and stored energy calculated for the smooth specimen. 
 

By analyzing the data presented in Fig. 5, we can conclude that the stored energy rate tends to zero at the time of failure. 
This supports the results [5] indicating that the stored energy is a thermodynamic parameter, which can adequately 
describe the damage evolution in metals under deformation. 
 
Calculation of stored energy at fatigue crack tip 
To define the plastic work at the fatigue crack tip, we have used the solution for stress distribution at the crack tip 
obtained by Hutchinson, Rice and Rosengren (HRR-solution). The specific plastic work in the direction of crack 
propagation can be written as [16]: 
 

 
1

0

( ) ( , )
( , , )

1


 

  


 


p n
e

p
n

J t nn
w r t d

n I r
         (4) 

 

where n is the hardening coefficient (in our case, n=4), In is the function of the hardening coefficient, r and θ are the polar 
coordinates of the point near the crack tip (x=rcosθ, y=rsinθ), σe is the tabulation function, and  J(t) is  the energy J-integral 
that is the function of applied cycling loading and crack length. The time dependence of the J-integral is plotted in Fig. 6. 
The stored energy is obtained as a difference between the accumulated plastic work and the accumulated heat dissipation 
energy calculated in the area near the crack tip at all time moments of the experiment. Thus, we have  
 

 ( , , ) ( , , ) 
it

p p

0

W x y t w x y t dt           (5) 
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Figure 6: Time dependence of the energy J-integral under cycling loading. 

 
The time dependence of accumulated plastic work, dissipative energy and stored energy calculated for the moving fatigue 
crack tip is shown in Fig. 7. To calculate the parameters presented in Fig. 7, the maximum of the temperature field near 
the crack tip was registered at each step of the experiment, and in equations (4)-(6) the origin of coordinates was displaced 
to a new position at each time moment. By comparing the time evolution of plastic work and dissipative energy, the 
deformation process corresponding to the transition from the stable state to the unstable state of crack propagation can 
be divided into three parts. 
The first stage lasts for approximately 1.3 second; correlation between two curves is good. From 1.3 second to 5 seconds, 
the dissipation energy increases slowly compared to the plastic work. Over this period, the stored energy is monotonically 
accumulated in the deformed material and transformed into the potential energy of lattice distortion. At the last moments 
before fracture, the heat dissipation energy increases jumpwise and reaches the value of plastic work. At this time the rate 
of plastic work is less than the rate of heat dissipation energy. It can be assumed that the damage accumulation 
mechanism is changed, and the material approaches the fracture stage, where the role of macroscopic displacements is 
essential, and the energy dissipation increases significantly. We can suppose that the plastic work at this moment cannot 
be described by traditional HRR-solution (4), because this model does not agree with the effect of a jumpwise increase in 
the dissipation energy. So, the stored energy calculated at this moment should be corrected. 
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Figure 7: Time dependence of plastic work, heat dissipation energy and stored energy at the point near the crack tip (1, 2, 3 – time 
points for β-distribution in Fig. 8). 

 
The data obtained for the examined material indicate that the stored energy reaches a critical value, after which the HRR 
solution is unable to describe the behavior of plastic work near the crack tip. We suppose that the stored energy observed 
at the last moment before fracture is equal to some constant that indicates the approaching material destruction. 
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                                     1                                                             2                                                                 3 
Figure 8: The first coordinate quarter of the space β-distribution at different time moments is shown in Fig. 7. The crack propagates 
along the x-axis. 

 
We introduce the parameter β to evaluate the value of stored energy in metals: 
 

( , , ) ( , , )
( , , )

( , , )



 p

p

W x y t Q x y t
x y t

W x y t
          (7) 

 

The space distribution of the parameter β at different time points is given in Fig. 8. A white pixel is the point of the crack 
tip where stresses are calculated based on the HRR-solution. Therefore, the plastic work has singularity at the crack tip. 
Pictures 1, 2 and 3 correspond to the points shown in Fig.7. It is seen that the dissipation energy increases depending on 
the plastic work, and the images of the space β -distribution are similar (pictures 1, 2). Picture 3 indicates that the β-
distribution changes, that is, in front of the crack tip an area with zero β appears in the direction of crack propagation. 
Thus, the crack growth can be expected in the area of zero β. 
The space distribution of the parameter β makes it possible to access the direction of crack motion and to predict its 
growth up to the specimen failure. This circumstance allows us to use the parameter β as a failure criterion that is based 
on the thermodynamic laws. 
 
 
CONCLUSION 
 

he infrared technique has been applied to investigate the effect of heat dissipation under quasi-static loading and 
its localization at the crack tip under cyclic loading. The original data processing algorithm developed earlier has 
allowed us to calculate the values of heat dissipation at the crack tip and to determine the area of plastic 

deformation localization on the surface of a smooth sample during the tensile test. A method has been developed for 
determining the stored energy and the parameter β, which could be used as a thermodynamic fracture criterion. The 
spatial and time distribution of the stored energy has been calculated using the infrared data. The damage parameter is 
taken as the ratio between the stored energy and the work of plastic deformation. For both the weakened and smooth 
samples, it has been found that the stored energy is accumulated in titanium specimens undergoing fatigue tests, and the 
value of stored energy is equal to zero when failure concentration reaches the critical value corresponding to specimen 
fracture. The obtained results yield information that can be used to develop engineering methods for analyzing the actual 
state of structures that undergo real loading. 
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ABSTRACT. In this paper is carried out the comparative analysis of effectiveness of test methods of 
determination of stiffness and strength properties of highly filled unidirectional fiberglass (Direct "E" roving 0.7 
- orthophthalic polyester resin 0.3) via  tensile testing along the reinforcement and three-point bending testing at 
several bases. The necessity of deviation from standard procedures is substantiated. Deformation and failure 
features of the material under quasi-static loading, as well as at low and high temperatures, are shown. 
 
KEYWORDS. Composite materials; Highly filled fiberglass; Test methods; Deformation and failure; High and 
low temperature. 
 
 
 
INTRODUCTION 
 

or designing and providing reliable operation of high loaded shell structures from layered-fiber cross-reinforced 
composites are relevant issues of an adequate definition of effective elastic and strength properties of the material. 
These issues are usually resolved with help of mathematical modeling or tests. In this case, the structural-

phenomenological modeling should be also based on the test determination of properties and features of the mechanical 
behavior of structural components of the composite. For modeling of a cross-reinforced fiberglass are most relevant 
properties of texture layer - that is a unidirectional fiber composite. Determination of unidirectional fiber composite 
properties is usually based on ASTM D 3039. In the test research of composite materials in the product is convenient to 
use method of beam-specimens bending on different bases, as this method allows determine the longitudinal strength and 
elastic modulus, shear modulus and shear (interlayer) strength [1]. According to this method, the properties are 
determined by three-point bending testing on different bases of beam-specimens, which are cut in the appropriate 
direction of finished product. This approach allows take into account technological features of the material production 
into product. However, this method gives obviously lower results, as work conditions of relatively short reinforcing fibers 
in cut specimen and continuous fibers in the product are significantly different. Anyway, in both cases, the result is based 
on test data. In practice, the lower results at test are interpreted as a certain margin of safety in product designing. 
Naturally, questions of estimation of this stock value and the adequacy of various test methods for providing structural 
mathematical modeling on the one hand, and product design in the framework of phenomenological approaches - on the 
other, arise. 
In this paper is held a comparative analysis of different methods of test determination of unidirectional fiberglass stiffness 
and strength properties, deformation and fracture characteristics of these materials under quasi-static loading and also at 
low and high temperatures. 
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MATERIALS AND CONDITIONS OF TEST  
 
Uniaxial tensile testing of unidirectional fiberglass 

ests of unidirectional fiberglass (Direct "E" roving 0.7 - orthophthalic polyester resin 0.3) were carried out in the 
direction of reinforcement. This material has main feature, which is high (70%) content of the reinforcing 
component. Increase of fibers volume fraction increases material strength in the direction of the reinforcement 

and a sharp decrease in strength in the transverse direction. The desire to test at high and low temperatures imposes 
certain restrictions on the size of the specimen. These circumstances lead to restrictions on the usage of standard 
approaches and methods (ASTM D 3039 / D 3039M-08) for the material testing. 
The grip in a form of sleeve has been designed and produced specifically for uniaxial tensile testing along the 
reinforcement. One of the device features is the lack of cross-compression in the gripping part of the specimen [2]. 
Unidirectional fiberglass specimen is made in a form of rod with a constant cross section. A specimen is holding in 
gripping area by adhesion, while it is being deformed and failed. Strength of this design is determined by the properties of 
the adhesive and the depth of the immersion. In this case, specimen length with the steel gripping sleeve is limited by 
working area of a temperature chamber. On the specimen gage length were applied labels for using non-contact 
extensometer Instron AVE, as shown in Fig. 1. 
 

 
 

Figure 1: The appearance of highly filled fiberglass specimen for uniaxial tensile test with applied labels for using non-contact 
extensometer Instron AVE [2] 
 
Tensile tests of unidirectional fiberglass along the reinforcement were held on a universal electromechanical system 
Instron 5882 with video extensometer Instron AVE. Climate chamber Instron 3119-407 was used at low and high 
temperatures tests. On Fig. 2 are shown testing system Instron 5882 (1), video extensometer (2) and a climatic chamber 
(3), and a specimen of the proposed construction in grips at tensile test at room temperature (22°C). The necessity of a 
non-contact extensometer is explained by fracture behavior of specimens, which are made from this material. 
 

 
 

Figure 2: The appearance of the unidirectional fiberglass specimen in grips at tensile tests: Instron 5882 test set (1), video 
extensometer (2), climate chamber (3). 
 
Twelve specimens were tested at room temperature. At low temperature were tested only 8 unidirectional fiberglass 
specimens: 4 specimens at 30°C, 4 specimens at 0°C. At high temperatures, were tested three specimens at each 
temperature of 40°C and 50°C. It should be noted, that the usage of sleeves and epoxy binder as an adhesive at high 

T 
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temperatures sometimes leads to the failure, which happens in form of creep of rod out sleeves without fiber failure of the 
specimen. For providing the compactness of the general assembly and for determination of fiberglass stiffness and 
strength properties was made an attempt of using upgraded grip-sleeves, shown in Fig. 3. [2] The essence of this device is 
to have a tapered hole, through which was expected to create a uniform compliance (glue) cross-compression of rod 
specimen at tension test. However, this test circuit didn’t always provide a positive result. So, ultimate tensile strength of 
fiberglass (Direct "E" roving 0.7 - orthophthalic polyester resin 0.3) at 50ºC in this test wasn’t determined. 
 

 
 

Figure 3: Scheme of device for unidirectional rod specimen testing at high temperatures [3] 
 
Types of diagrams of unidirectional fiberglass (Direct "E" roving 0.7 - orthophthalic polyester resin 0.3) deformation in 
tensile test at various temperatures came out similar. On Fig. 4 is shown typical diagram of unidirectional fiberglass 
deformation in tensile test with usage of videoextensometer Instron AVE. 
 

 
 
Figure 4: The appearance of typical diagram of unidirectional fiberglass Direct "E" roving 0.7 - orthophthalic polyester resin 0.3 
deformation in tensile test. 

 
Thus, as a result of specimen testing of highly filled unidirectional fiberglass on uniaxial tensile along the direction of 
reinforcing at room, low and high temperatures, have been identified elastic and strength characteristics of the material. 
 
Three-point bending testing of unidirectional fiberglass 
Main characteristics of unidirectional composite were also determined at bending tests. Tests were carried out by three-
point bending method of beam specimens with various lengths between brackets. For calculation of mechanical 
characteristics were used mathematical tools for anisotropic materials [1]. Testing scheme is shown on the Fig. 5. In whole 
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testing technique is similar to ASTM D2344. At this case, fiberglass (Direct "E" roving 0.7 - orthophthalic polyester resin 
0.3) specimens were cut along reinforcement in a form of beams with cross section 5х5 mm. Three specimens were tested 
on each of four bases: l1 = 30 mm, l2 = 50 mm, l3 = 70 mm, l4 = 100 mm. Specimen lengths respectively were defined like 
Li = li + li/5. By the results of tests were made force-displacement diagrams. Mechanical characteristics calculations from 
test results of three specimens on one base were averaged. 
 

 
 

Figure 5: Bending test of unidirectional fiberglass (Direct "E" roving 0.7 - orthophthalic polyester resin 0.3). 
 
 
THE PROCESSING OF THE EXPERIMENTAL DATA 
 

rom uniaxial tension test could be determined the ultimate tensile strength σb, elastic modulus E and Poisson’s 
ratio . In this case, tensile strength and Young’s modulus were determined [2]. Necessary stress and strain for 
these characteristics calculations were on gage length. Ultimate tensile strength was determined by formula 

 

max
b

P

F
   

 

where maxP  – maximum force at specimen deformation, F  – initial cross section area of gage length. Longitudinal 
deformations were measured by non-contact videoextensometer Instron AVE and were calculated by formula 
 

E







 
 

where   – increment of stress on linear region of deformation curve,   – corresponding increment of specimen 
linear deformation. 
For calculation of elastic and strength characteristics at bending of fiberglass specimens was used improved theory [1]. In 
addition to the normal stress in the bent beam there are tangential stresses, influence of which on the strength and 
stiffness of isotropic composites is negligible. At bending tests of anisotropic beams, depended on the nature of the failure 
of specimen, can be determined flexural strength or strength at interlaminar shear. In practice, both normal and shear 
stresses are working in the specimen, so the determination of the properties of anisotropic composite materials at bending 
should take into account their mutual influence. 
The adjusted formula for determination of maximum of normal stress b  at bending has the following form  

 

2 4

1
15 525b f

  
 
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and for determination of maximum of shear stress 
2 4

1
60 12600b f

  
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2
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 

   and max3

4f

P

bh
    , so 

2
f

i

Eh

l G

    – parameter of anisotropy, fE  – fictitious elastic modulus; 

G  – interlayer shear modulus; b  – specimen width, il  –length between brackets at three-point bending. 
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For defying elastic modulus at three point bending of laminate composite material should be used refined dependencies, 
which consider influence of shear deformations and binding maximum flexure max of the beam in the middle of brackets 

with applied force P, true elastic modulus at bending t
fE  and interlayer shear modulus G : 

 

23

max 1
48

fi
k

f i

EP l h

E I l G
 

           
                                                        (1) 

where k  – coefficient, which depends on cross section form of the beam (for rectangular 1.2k  ); 
3

12

bh
I   – moment 

of inertia of beam cross section. True elastic modulus at bending t
fE  is bonded with fictitious modulus 

3

max48
i

f

P l
E

I 



 

 

in the following ratio 
 

2
1 1 1.2

t
f f i

h

E E G l

 
   

 
           (2) 

 

The higher ratio of thickness of the specimen to its length 
i

h

l
 and the higher degree of anisotropy of composite material, 

characterized by 
t
fE

G
, the more different true elastic modulus from fictitious. 

With one test it is impossible to calculate elastic modulus by formula (1) as it has two unknowns fE  and G . So for their 

determination are tested several specimens with different ratios 
i

h

l

 
 
 

 and then was diagram made, where on the 

horizontal axis was put off value 
2

i

h

l

 
 
 

 and on the vertical axis –
1

fE
. In this coordinates, relation (2) has to be 

represented as a straight line, which crosses the vertical axis at the point 
1

t
fE

 and slope of this line to the horizontal axis 

equal 
1.2

G
. Then value of t

fE  andG  are determined by method of least square. 

 
 

DISCUSSION OF RESULTS 
 

ension test results of highly filled fiberglass specimens (Direct "E" roving 0.7 - orthophthalic polyester resin 0.3) 
are in the Tab. 1. 
 

Temperature, °C 
Tensile strength at break 

b MPa 
Young's modulus in tension 

E, GPa 

-30 922.1 34.2 

0 980.2 36.8 

+22 987.1 47.8 

+40 690.5 38.8 

+50 - 37.4 
 

Table 1: Unidirectional fiberglass (Direct "E" roving 0.7 - orthophthalic polyester resin 0.3) properties at tension test [3]. 
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According to the table, highest values of the characteristics are at test at room temperature. When temperature is lower or 
higher, then room temperature, characteristic value decreases. Strength at 50°С couldn’t be determined. 
In the Tab. 2 there are three-point bending test results of highly filled fiberglass specimens (Direct "E" roving 0.7 - 
orthophthalic polyester resin 0.3). It should be noted, that this method allows getting more characteristics: to Young’s 
modulus Е and to longitudinal strength σb are added interlayer shear modulus G and shear strength τb. There were no 
problems with testing at various temperatures. However, this method is more sensitive to the quality of the test. In [1] 
there are range of parameters, which influence on results: slide from brackets, optimal ratio h/li, and edge effects. There 
are no clear tendencies of temperature effects. Value of normal strength is lower on 20-25%, then values which were got 
at tensile tests. Influence of shear components on comparable (Е, σb) characteristics is clearly noticeable. 
 

Temperature, 
°C 

Properties 

E, GPa G, MPa σb, MPa τb, MPa 

- 30 40.4 762 682 24 

+ 22 30.7 924 674 32 

+ 50 35.7 1142 489 38 
 

Table 2: Unidirectional fiberglass (Direct "E" roving 0.7 - orthophthalic polyester resin 0.3) properties at bending tests 
 
 

FEATURES OF FAILURE 
 

ll tested unidirectional fiberglass specimens at uniaxial tensile, regardless of the temperature, failed like it is shown 
on Fig. 6. This type of failure is typical for fiber exfoliation and complete matrix destruction. Obviously, is the 
presence of shear deformation, which was not taken into account at stress calculation. This kind of failure may be 

associated with the grip construction without crimping. 
 

 
 

Figure 6: Failed unidirectional fiberglass (Direct "E" roving 0.7 - orthophthalic polyester resin 0.3) specimens after uniaxial tensile 
tests. 
 
The same influence of specimen and grip construction was also noted in the paper [4] when was used NOL-method for 
getting characteristics of unidirectional fiberglass, Fig. 7, a. However, preliminary cyclic loading leaded to qualitative 
change in the type of failure (Fig. 7, b), whereas specimen and grip construction wasn’t changed. 
 

 
 

 
(a) (b) 

 

Figure 7: RBN 1680-UP 2217 fiberglass failure at static deformation by rigid half-discs (a) and after cyclic loading (b). 
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On Fig. 8 are shown types of failure of beam specimens at three point bending tests on large (a) and small (b) bases. 
Clearly seen failure character: on long base – from normal stresses at tearing and crushing of fibers; on short base – 
mainly on in-plain shear, perpendicular to the plain of loading. 

 
 

Figure 8: Failed unidirectional fiberglass (Direct "E" roving 0.7 - orthophthalic polyester resin 0.3) at three point bending tests on large 
(a) and small (b) bases. 

 
 

CONCLUSION 
 

hus, the identified properties of unidirectional fiberglass in two ways: in the direction of the tensile reinforcement 
and in three-point bending at different bases. Tests were carried out at normal, high and low temperatures. Values 
of comparable properties are close, but obvious tendency of temperature effect at tensile tests doesn’t confirm at 

bending tests. Strength of normal separation, measured at bending testing, is lower on 20-25% than strength, measured at 
tensile testing. Both test methods are forced to differ from standard methods. At tensile tests were used grips without 
lateral compression of specimen material or with uniform pliable compression, which is caused by wedge effect. Bending 
tests can determine more characteristics, are not critical to changes of temperature and use improved theory of bending. 
Type of failure of unidirectional fiberglass at tensile tests along reinforcement is similar to the usage of NOL-method in 
the absence of damage accumulation. This type of failure suggests a significant influence of shear deformations. At three 
point bending tests specimen failed traditionally: on long bases – mainly from normal stresses, on short – from tangent. 
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ABSTRACT. The paper is devoted to theoretical and experimental investigation of materials behavior on 
postcritical deformation stage (strain softening). Tests results, which confirm theoretical justification of 
specimen configuration impact on the possibility of creating descending sections of strain curve, are given. It is 
shown that, with sufficient stiffness of loading system, equilibrium postcritical deformation of materials is 
possible. It is confirmed in uniaxial tension tests with unloading on postcritical deformation stage. Test results 
on tension with torsion of thin-walled tubular specimens in strain softening conditions are adduced. 
 
KEYWORDS. Experimental mechanics; Postcritical deformation; Proportional tension with torsion. 
 
 
 
INTRODUCTION 
 

issipative processes of inelastic deformation, including the processes of structural failure and fracturing, reflect 
on the deformation curve as nonlinearity. At the final stage this leads to softening of materials and the 
appearance of a descending section on strain curve. Completeness of implementation of the load-carrying 

capacity of strength constructions is determined by the degree of postcritical deformation. When postcritical deformation 
stage is taken into account in adjusted computation, it allows a reserve of constructions load-carrying ability to be 
revealed. It makes possible to forecast the destruction moment more accurately [1, 2]. Questions of theoretical, 
experimental and numerical study of postcritical deformation mechanisms of materials attract attention of researches in 
connection with the questions of use of materials deformation reserves, the rise of load-carrying ability and survivability of 
materials, and the analysis of possibilities of failure processes management [1-9]. 
On the postcritical deformation stage the formation of macro-destruction conditions takes place. These conditions, unlike 
the traditional view that defines the use of force or deformation criteria are not definitely related to the stress-strain state 
at the point of deformed body. During the transition from the equilibrium stage of damage accumulation to non-
equilibrium stage of destruction, interaction of the deformed body with the loading system plays the key role. As a result, 
based on loading conditions, each point on the descending section of stress-strain curve can correspond to the time of the 
loss of load-carrying ability as a result of transitioning from stable to non-equilibrium stage of the damage accumulation 
process. Thus, the rigid loading system may contribute to the "adaptation" of the object in the process of destruction due 
to local dissipation of elastic energy [1, 2]. However the force or deformation criteria can be considered with a view to 
transition of material to postcritical strain stage (similarly the condition of transition to plastic state). It is necessary to 
experimentation verify of criteria, particularly by test results in plane stress state under combined tension-torsion loading 
[11- 13]. 
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It is known that it is necessary to use high-stiffness test systems for obtaining equilibrium curves of materials postcritical 
deformation. However, even with high-stiffness test machine, in some cases obtaining descending sections of strain curve 
is not possible. It may be associated with specimen geometry. In work [10] a deformable body Ω is considered with 
boundary Σ and contact type boundary conditions: 

 

      0| ( )
Sij j ij j in R u r S    r r r  

 

where ijR  are coefficients of loading system stiffness, ( )jn r  are direction cosines of normal vector to the surface of body 

Ω in the point with coordinate r  . Defining relationship is written in the following form: 
 

' ( ,  )ij ijmn mnd С d      
 

where χ is indicator reflecting the nature of the process (active loading ( 1  )or unloading). The condition of postcritical 
deformation stability in weakness zone Ω0 is written as follows: 
 

0 0

'
ij j i ijmn mn ij ijmn mn ijR u u d C d D d     

  

         

 

where ' ( ,  1)ijmn ijmnD C      are components of softening modulus tensor. The sign of postcritical deformation is 

formulated in the following form: 
 

0ij ijd d     
 

In a particular case of uniaxial deformation of a solid cylindrical specimen with length l and cross section square F and 
with weakness zone length l’ and cross section square F’<F, the main volume of the specimen is part of the loading 
system with respect to the weakness zone. It has been shown that the necessary condition of reaching postcritical 
deformation stage in the weakness zone is: 

 

0 c MQ Q Q    
 

where 1
M MQ R   is compliance of test machine ( MR is stiffness of test machine), '( )/ ( )cQ l l EF    is compliance of 

bar (main volume), ' '
0 / ( )Q l DF   is compliance of the softening region ( /D d d   is the current meaning of 

tangent softening modulus). Similarly for a thin-walled tubular specimen with length l and moment of inertia Jp, with 

weakness region with length l’ and moment of inertia  ' '
p p pJ J J , it can be seen that the condition necessary for 

postcritical stage realization in the weakness region under torsion can be written in the following form: 
 

0 c ML L L    
 

where 1
M ML N   is the compliance of test machine on torsion ( MN is stiffness of test machine on torsion), 
'( )/ ( )c pL l l GJ   is the compliance of the bar on torsion (main volume), ' '

0 / ( )G pL l D J  is the compliance of the 

softening region on torsion ( /GD d d   is the current meaning of tangent softening modulus on torsion). 
The aim of the work is experimental examination of the impact of loading system stiffness (particularly geometrical 
parameters of specimens) on the construction of strain curve with descending sections, and construction of strain curves 
with postcritical deformation stages in uniaxial tension and proportional tension-torsion tests. 
 
 
TESTS AND RESULTS 
 
Test equipment 

ests were carried out on Instron 8850 biaxial servohydraulic test system (maximum load 100 kN, maximum torque 
1000 Nm, cyclic tests with frequency up to 30 Hz). Strain in the test part of specimen in uniaxial tension tests was 
registered by Instron 2620-601 extensometer, and in proportional tension-torsion tests it was registered by 

Epsilon 3550-010М biaxial extensometer. 
T 
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Tests with various loading system stiffness 
Experimental investigation of the effect of stiffness of the loading system on the construction of strain curves with 
descending sections was performed in two test groups. In the first test group, solid cylindrical specimens with test part 
length of 10 mm, diameter of 6 mm with additional deformation parts of different lengths (length of 30 mm, 60 mm, 
diameter of 8 mm) were used. In this case the additional test parts increased the compliance of the loading system with 
respect to the weakened central part. In the second test group specimens with different diameters (5 mm, 10 mm, 13.5 
mm) with the same ratio of test part length to diameter (l0/d=1) were used. In this case, the change of the specimen’s 
diameter changes the specimen’s stiffness and consequently changes the ratio of specimen stiffness to test machine 
stiffness. 
In Fig. 1 the results of two test groups of steel 20 (GOST 1050-88) are shown. The influence of the loading system 
stiffness is reflected by the presence of different points on the descending section of strain curve, which correspond to the 
loss of stability moment of the deformation process. Stress is calculated as ratio of load to initial cross-section square of 
the specimen, the strain is ln(1 )ln   , where ε is the ratio of extension by extensometer to initial gauge length. 
 

  
 

(a) (b) 
 

Figure 1: Strain curve of steel 20 and destruction moments: (a) is test results of specimens with additional elements (1 is specimen 
without additional elements, 2 and 3 are specimens with additional elements, with total lengths of 30 mm and 60 mm), (b) is test 
results of specimens with different stiffness (1, 2 and 3 are specimens with diameters 5.0 mm, 10.0 mm and 13.5 mm. 
 
The possibility of equilibrium material deformation on softening stage is also confirmed by unloadings and repeat 
loadings. In Fig. 2 the strain curve of steel 20 at uniaxial tension with unloading on different stages of elastoplastic and 
postcritical deformation (a) and final section of softening with unloadings (b) are shown. Strain rate at tension and 
unloading was 0.02 min-1. 
 

  
 

(a) (b) 
 

Figure 2: Strain curve of steel 20 at uniaxial tension: with unloading on different deformation stage (a), final section of strain curve (b). 
 

Thus, to obtain equilibrium descending sections of the strain curve and complete curves (equilibrium drop of load to zero 
value), it is necessary to provide conditions of sufficient loading system stiffness with respect to test part of the specimen 
(high stiffness of the test machine, geometrical parameters of the specimen). With the above conditions, it is possible to 
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obtain strain curves with sections of softening both under uniaxial tension and under tension combined with torsion. 
From the perspective of creation and improvement of postcritical deformation mechanics models the important question 
is the behavior of materials at a softening stage in combined tension-torsion conditions. 

 
Strain softening in tension-torsion tests 
Proportional tension-torsion tests were implemented on thin-walled tubular specimens of steel 40X (GOST 4543-71) and 
15Х2ГМФ (TU 14-159-227-93 (RF Technical Requirements)) with reduced test part length. Shape and dimensions of 
specimens are shown in Fig. 3. 

 

 
(a) 

 
(b) 

 

Figure 3: Shape and dimensions of thin-walled tubular specimens of steel 15Х2ГМФ (a) and steel 40Х (b). 
 
Strain trajectories in deformation space correspond to straight lines. For steel 40X the ratio of axial strain to shear angle is 
1.60 and 0.80, for steel 15Х2ГМФ it is 0.57 and 0.30. The biaxial extensometer is intended for a small measurement range 
and it was used for correction of strain curves (by the linear section of the diagrams) which were obtained from the data 
of test system internal transducers. In Fig. 4 and Fig. 5 test results of steel 20 and 15Х2ГМФ at proportional tension with 
torsion are shown.  
 

(a) 
 

(b) 

Figure 4: Test results of steel 40X at proportional tension-torsion with ratio ε/γ=1.60 (I) and ε/γ=0.80 (II) in coordinates “axial stress 
– axial strain” (a) and “shear stress – shear angle” (b). 
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Stress is calculated as ratio of load to initial cross-section square of the specimen, the strain is 0/l l  , shear stress is 
2/ (2 )M r h  , shear angle is 0/r l  . In Fig. 4 the strain curves are presented which were constructed at tests of 

two specimens for each strain trajectories. For steel 15Х2ГМФ stress curves for the two specimens for each strain 
trajectories were obtained, in Fig. 5 results for one specimen are shown. 
 

  
 

(a) 
 

(b) 

Figure 5: Test results of steel 15Х2ГМФ at proportional tension-torsion with ratio ε/γ=0.57 (I) and ε/γ=0.30 (II) in coordinates “axial 
stress – axial strain” (a) and “shear stress – shear angle” (b). 

 
The important question is which deformation moment corresponds to the start of the softening stage, i.e. the reduction of 
loads at constant increase of strains. In Fig. 4 and Fig. 5 curves are marked with points and numbered for the convenience 
of comparison of strain curves in coordinates “axial stress – axial strain” and “shear stress – shear angle”. In the analysis 
of experimental data diagram sections corresponding to the hardening of material at tension axis and shear axis can be 
highlighted. This corresponds to sections 2-3 and 7-8 in Fig. 4 and sections from limits of elasticity to points 1 and 4 in 
Fig. 5. There is also the strain range in which the softening of material at tension axis and shear axis occurs (the sections 
4-5 and 9-10 in Fig. 4 and the sections from points 2 and 6 to specimen destruction in Fig. 5). It is necessary to draw 
special attention to areas of strain curves corresponding the hardening of material in coordinates “axial stress – axial 
strain” with synchronic softening in coordinates “shear stress – shear angle”. The above is shown in sections of strain 
curves 3-4 and 8-9 in Fig. 4 and sections 1-2 and 4-6 in Fig. 5. 
 
 
CONCLUSIONS 
 

n a result of this work, there is experimental confirmation of the influence of loading system stiffness with respect to 
test part of the specimen (geometrical parameters of the specimen) on realization of strain curve descending section 
at uniaxial tension. This is reflected in the presence of different points on the descending section which corresponds 

with the loss of deformation processes stability. The possibility of obtaining postcritical strain curves with sufficient 
stiffness of the loading system is confirmed by unloadings and repeated loadings at the softening stage under uniaxial 
tension. 
The stress-strain curves of materials with softening sections at proportional tension with torsion of thin-walled tubular 
specimens are obtained at different trajectories of strain. It confirms the possibility of postcritical strain realization at 
different types of stress-strain state and allows us to obtain new data for creating models of softening medium mechanics. 

I 

http://dx.medra.org/10.3221/IGF-ESIS.24.10&auth=true
http://www.gruppofrattura.it


 

                                                           M.P. Tretiakov et alii, Frattura ed Integrità Strutturale, 24 (2013) 96-101; DOI: 10.3221/IGF-ESIS.24.10 
 

101 
 

 
REFERENCES 
 
[1] V.E. Vildeman, Yu.V. Sokolkin, А.А. Tashkinov, Mechanics of inelastic deformation and fracture of composite 

materials, (1997) 288. 
[2] V.E. Vildeman, Int. J. for Computational Civil and Structural Engineering, 4(2) (2008) 43. 
[3] V.E. Vildeman, Yu.V. Sokolkin, A.A. Tashkinov, Mechanics of Composite Materials, 28(3) (1992) 214. 
[4] Yu.V. Sokolkin, V.E. Vildeman, Mechanics of Composite Materials, 29(2) (1993) 120.  
[5] V.V. Struganov, Vestnik SSTU, Physics-mathematics science, 30 (2004) 5. 
[6] V.V. Struganov, Physical Mesomechanics, 7(S1-1) (2004) 169. 
[7] Yu.V. Sokolkin, V.E. Vildeman, A.V. Zaitsev, I.N. Rochev, Mechanics of Composite Materials, 34(2) (1998) 171. 
[8] A.V. Ilinykh, M.V. Radionova, V.E. Vildeman, Composites: Mechanics, Computations, Applications, 2(2) (2011) 95. 
[9] V.E. Wildemann, A.V. Ilyinykh, Physical Mesomechanics, 10(4) (2007) 23. 
[10] V.E. Wildemann, J. Appl. Maths Mechs, 62(2) (1998) 281. 
[11] S. Nohut, A. Usbeck, H. Özcoban, D. Krause, G.A. Schneider, Journal of the European Ceramic Society, 30 (2010) 

3339. 
[12] A.A. Lebedev, B.I. Kovalchuk, F.F. Gignyak, V.P. Lamashevskii, Mechanical properties of structural materials under 

complex stress state, (2003) 540. 
[13] N.M. Zarroug, R. Padmanabhan, B.J. MacDonald, P. Young, M.S.J. Hashmi, J. of Materials Processing Technology, 

143–144 (2003) 807. 
 
 
NOMENCLATURE 
 
Ω deformable body Ω0 weak zone of deformable body 
Σ boundary of deformable body ΣS boundary part with force conditions 
σij stress tensor components εij strain tensor components 
uj displacement vector components Rij loading system stiffness tensor components
Si0 force vector components χ indicator of the process nature 

'
ijmnC   components of tangent material modulus 

tensor 
ijmnD  components of softening modulus tensor 

D softening modulus under tension 
GD   softening modulus under shear 

RM coefficient of test machine stiffness under 
tension 

MN   coefficient of test machine stiffness under torsion

r radius-vector σ axial stress 
ε axial strain εln logarithmic axial strain
τ shear stress γ shear angle 
E Young modulus G shear modulus 

0Q   compliance of the softening region 
0L   compliance of the softening region on torsion

CQ   compliance of bar (main volume) 
CL   compliance of bar (main volume) on torsion 

MQ   compliance of test machine 
ML   compliance of test machine on torsion 

l current test part length 'l   length of specimen weak zone 
l0 initial test part length M torque
F cross section square of specimen main zone 'F cross section square of specimen weak zone   

pJ   polar moment of inertia of main zone of thin-
walled tubular specimen 

'
pJ   polar moment of inertia of weak zone of thin-

walled tubular specimen 
h wall thickness of thin-walled tubular specimen φ torsion angle 
r middle radius of test part of thin-walled tubular 

specimen 
d test part diameter of solid cylindrical specimen
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ABSTRACT. Joint theoretical and experimental investigations have allowed to realize an approach with use of 
mathematical and physical modeling of processes of a shock wave loading of powder materials. 
In order to gain a better insight into the effect of loading conditions and, in particular, to study the effect of 
detonation velocity, explosive thickness, and explosion pressure on the properties of the final sample, we 
numerically solved the problem about powder compaction in the axisymmetric case. 
The performed analysis shows that an increase in the decay time of the pressure applied to the sample due to an 
increase of the explosive thickness or the external loading causes no shrinkage of the destructed region at a 
fixed propagation velocity of the detonation wave. Simultaneously, a decrease in the propagation velocity of the 
detonation wave results in an appreciable shrinkage of this region. 
 
KEYWORDS. Shock waves; Fracture; Powder. 
 
 
 
INTRODUCTION 
 

ethods of explosive loading of powder materials in conservation ampoules are applied in order to obtain new 
materials including composite ones with the unique physical and mechanical properties. In addition, these 
methods can be used to study phase transitions occurring in materials at high pressures and temperatures taking 

place behind shock waves, as well as for the synthesis of metastable phases. 
In recent decades, significant development has been achieved in such a scientific and technical branch of materials science 
as powder metallurgy. This term is currently understood a whole complex of problems connected with the design of 
materials and products from metal and nonmetal powders. Interest in these problems is quite understandable since the 
opportunity to create new classes of materials with unique and controllable properties which can not be obtained by 
ordinary metallurgy methods has arisen. 
A special place in the powder metallurgy is occupied by explosive compaction of powder materials. It is easy to explain 
the strong interest in the explosive compaction. It consists in the fact that virtually all the methods of composite materials' 
production from powder mixtures lead to a change in initial material properties due to high temperatures and relatively 
long duration of the process. 
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Since the powders being in the form of granules, fibers, needles and ribbons, possessing the necessary properties in the 
initial state, can not be used directly to produce semi-finished products or components, the methods of compaction of 
these materials perform two tasks at once. On the one hand the compaction changes the shape and size of the powders, 
and on the other hand it produces the material itself. From this point of view, the short exposure to high temperatures 
and pressures during explosive compaction allows, in general, to keep the original structure and properties of the 
components. At the same time, varying of the intensity and time exposure to high pressure and temperature in shock 
compression allows to modify, if necessary, the structure and properties of the compacts a controlled manner. 
The loading of the powder materials in the conservation ampoules can be carried out by means of both plane and oblique 
shock waves. Each of the methods has its pros and cons. The explosive loading by oblique shock wave is characterized by 
high values of shear strain, in comparison with the plane impact, which leads to stronger bonds between the compacted 
particles. In addition, this scheme allows to obtain the compacts not only in the form of plates, but pipes, rods, cones, etc 
as well. One can also get the compacts of large sizes. The loading by plane shock waves allow to vary the pressure and 
temperature behind the shock front in a wider range and to reach much higher values of these parameters. At the same 
time, the method is more material-consuming and has limitations on the size of the loaded samples. 
Investigation into the interaction between oblique shock waves in porous materials and powders is a topical problem in 
optimization of loading conditions for obtaining, from a given sample, a compacted material with spatially uniform 
physical and mechanical properties. In compacting a powder in the cylindrical scheme, an irregular interaction between 
shock waves occurs. The compacted powder displays substantial non-uniformity in particle displacements, resulting in 
inhomogeneity of powder characteristics and, in some cases, even in material failure. 
In compacting porous material and powders, the strong bonding between particles is achieved through the combined 
pressure-shear loading. During the compacting, a substantial energy is released at the interfaces between powder particles, 
resulting in surface cleaning and material melting in narrow interfacial regions. As a result, pore collapsing, giving rise to 
strong bonding between particles, occurs. Below, this phenomenon is termed compaction. 
V.F. Nesterenko proposed the following criterion for the formation of a strong compact: 
 

 > 2 VP H            (1) 
 

where, according to [1], 3V sH Y . Following [1], we can write criterion (1), deduced from experimental data, as 
 

> 6 sP Y            (2) 
 

In turn, R. Prummer [2] uses the following condition for obtaining a uniform, in its physical properties, cylindrical 
compact with no Mach reflection induced singularities at its center:  VP H , where P  is the detonation pressure. 

Comparing condition (1) with the condition  VP H , Nesterenko [1] arrives at a conclusion that it is impossible in 
principle, without a central rod, to obtain a spatially uniform compact in the cylindrical loading scheme since the shock 
pressure required for obtaining a dense compact (2) will always lead to Mach reflection at the center of the sample. 
Another important problem is preservation of the finish compact after loading. With the arrival of unloading waves, there 
arises a tensile stress that results in partial or complete destruction of the sample. We assume that the sample undergoes 
mechanical failure if the maximum tensile stress max  reaches a certain critical value * . In line with the adopted 
hypothesis, the following condition for the sample failure should be assumed:  

 

*>max             (3) 
 

where max  is the highest stress among the principal stresses for the strained state under study and *  is the critical 
stress. 
In the present work, the critical stress *  is estimated as  

 

* 1= (2 / 3) (1/ )sY ln m  
 

where 1m  is the residual porosity. Taking the finish-compact density to equal 99%, we obtain 1 = 0.01m  and * 3  sY . 
For the principal stresses, we have:  
 

 2 2
1

1
= ( ) 4

2 2
xx yy

xx yy xy

 
   


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3 =     

 
 
EXPERIMENTAL STUDY OF THE COMPACT STRUCTURE 
 

xperiments on the explosive compaction have been conducted by a cylindrical scheme without a central rod. The 
powder has consisted of particles of nearly spherical shape and with size of 145-310 µm (Fig. 1). Bulk density of 
the powder has been in all experiments for copper equal to  -5.0 ± 0.05 g/cm3, for aluminum  -1.4 g/cm3. 

The experimental arrangement is shown in Fig. 2. 
 

 
 

 
Figure1: Initial cooper powder. 

 
Figure 2: Scheme of explosive compaction: 1 – detonator, 2 –
explosive charge, 3 – steel plugs, 4 – container (steel tube 12 mm 
in diameter), 5 – copper powder, 6 – momentum trap. 

 
Explosive compaction occurs under the action of the detonation products of the contact explosive charges. For varying of 
the detonation velocity the charges were made from ammonite, RDX and mixture of ammonite with RDX in different 
proportions. The detonation velocity (D) was measured by electrical contact technique, and ranged from 3.19 to 5.26 
km/s. Container wall was thin compared to the thickness of explosive layer and diameter of the powder sample. Structure 
of compacts cross-sections were studied using an optical microscope NEOPHOT. 
In Fig. 3 the structures of the cross sections near the axis of the samples is shown for three different values of detonation 
velocity (3.19, 3.95 and 5.26 km/s) and at the same thickness of explosive charge – 5 mm. 
 

  
(a) (b) (c) 

 

Figure 3: The structures of the cross sections of the samples for three different values of D and at the same thickness of explosive 
charge – 5 mm: a) D=3.19 km/s; b) D=3.95 km/s; c) D=5.26 km/s. 
 
It can be noted that with the increase of the detonation velocity, and hence the shock pressure, a compacts structures 
change. At minimum value of D compact is homogeneous. Then, in the center due to the irregular reflection of the 
converging shock wave a zone of melt appear. And at D=5.26 km/s in the compact the radial cracks arise. A further 
increase in D can lead to the destruction of the container. To investigate the effect of the thickness of the explosive charge 
on the crack formation, an experiment was conducted in which the thickness of the charge was increased to 10 mm, and 
the detonation velocity was 5.17 km/s. The structure of this compact is shown in Fig. 4. 
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Figure 4: The structures of the cross section of the sample loaded at D=5.12 km/s and thickness of the explosive charge 10 mm. 
 
Comparing structures from Fig. 3а and Fig. 4, it is visible, that in spite of approximately identical detonation regimes, in a 
compact in Fig. 4 cracks are absent.  
 
 
NUMERICAL SIMULATION OF THE EXPLOSIVE LOADING 
 

n order to gain a better insight into the effect of loading conditions and, in particular, to study the effect of detonation 
velocity, explosive thickness, and explosion pressure on the properties of the final sample, we numerically solved the 
problem about powder compaction in the axisymmetric case using conditions of above mentioned experiments. 

The problem statement according to experimental scheme is clear from Fig. 5. 
 

D
P

powder

explosive
Y

X  
Figure 5: The problem statement. 

 
We solved the full system of equations governing the deformation of a porous elastic-plastic material [3]. The action of 
the explosion products on the sample was modeled with a pressure applied to the upper border of the sample. The 
pressure was calculated by the approximation formula for the pressure upon unrestricted dispersion of detonation 
products [4]:  

 

 1 1

3( 1)
( )= exp( ( / )/ ), =

4( 1)
e e

H
e

P t P t x D t t
D

 



 


 

 

Here e  is the explosive thickness and  e  is the adiabatic exponent of the detonation products. Since the problem is 
symmetric, a half of the experimental assembly is considered. 
The symmetry axis is the axis of the container with the powder. On the symmetry axis rigid wall boundary conditions are 
set. The right boundary is considered to be free of stress, and at the left boundary condition of a rigid wall is put. 
Computation of the contact boundaries is performed by using a symmetric algorithm [5]. The calculations are carried out 
by the M.L. Wilkins scheme [6]. The shock wave propagates from left to right. Geometric dimensions and values of the 
physical parameters correspond to the experimental data mentioned above. In this paper a few-parametric equation of 
state is applied [7], which has allowed to simulate shock-wave processes with a minimal number of physical parameters as 
the initial data. 
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or, in terms of free energy 
 

2/3

2
, , 0

0

( ) 1
( , ) ( ) ln

2x v l v e

V V
F V T E V c T c T

T V

        
   

 

 

where xP  and xE  - pressure and specific internal energy of the zero isotherm, T  - temperature, , ,v v l v ec c c   - heat 

capacity at constant volume, ( )V  - the Debye temperature. 
The equation of state presented here is based on the dependence of the Gruneisen coefficient γ on the volume [8] 
 

0( ) 2 / 3 2 /(1 / )V aV V     
 

,01 2 / ( 2 ) 2 /s t sa P K      
 

where 0 /s s vK V c  , sK  - adiabatic bulk modulus,   -oefficient of thermal expansion, ,0tP  - heat pressure under the 

normal conditions. 

To find the elastic curves a generalized model describing the Gruneisen coefficient  V  is used: 
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at 0t   the equation corresponds to the Landau and Slater theory [8, 9], at 1t   it corresponds to the Dugdale and 
MacDonald hypothesis [10], and at 2t   to the theory of free volume [11]. 
In the physics of shock waves a method of calculating the pressure at the Hugoniot adiabat of the porous material by 
pressure on the “reference” Hugoniot adiabat of monolithic material [12] is known: 
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Here V  is the specific volume of the Hugoniot adiabats, 0V and 00V  are specific volumes of monolithic and porous 
materials , respectively, at the normal initial conditions. 

 
 

CALCULATION RESULTS AND DISCUSSION 
 

Ig. 6, a and b shows the pressure isolines for the cases of planar and cylindrical symmetries with identical loading 
conditions. It is seen from Fig. 6 that, in the planar statement of the problem, a regular reflection of the incident 
shock wave takes place. In the case of the cylindrical loading scheme, the incident shock waves bends as it 

approaches the cylinder axis, and, under the same loading conditions, an irregular reflection occurs. 
Fig. 7a shows the pressure profile near the symmetry axis for the cases of planar and cylindrical statements (solid and 
dashed curves, respectively). An appreciable pressure rise near the symmetry axis is observed in the case of cylindrical 
configuration compared to the planar problem due to the divergence of the shock wave to the axis. 
Fig. 7b shows the profile of the longitudinal velocity xu  across the sample under loading behind the shock front. The 

solid and dashed lines show the data for the planar and axisymmetric problem statements, respectively. It is clearly seen 
that the velocity in the cylindrical case is much greater than in the planar variant. 
As stated above, an important problem is preservation of finish compact, i.e., preventing its mechanical failure and 
obtaining a sample with uniform properties. Using criterion (3), we can find the interface between the solid and distructed 
materials. The regions of the compacted and porous materials for various explosive thicknesses for the external pressures 

F 
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= 0.05P  Mbar and = 0.075P  Mbar are shown in Fig. 8, a and  b, respectively. In these calculations, the detonation 
velocity was = 5D  km/s. The solid, dashed, and dot-and-dash lines outline the destruction regions for the explosive 
thicknesses  = 2e  cm, = 3e  cm, and = 5e  cm, respectively. Region 1 is the compacted region, and Region 2, the 
destruction region. An analysis of these graphs shows that an increase in the explosive thickness and, hence, an increase of 
the loading decay time does not cause any substantial shrinkage of the destruction region. 
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Figure 6: Pressure isolines: a) planar geometry; b) cylindrical 
configuration. 

Figure 7: Pressure profile (a) and longitudinal-velocity profile 
( )xu y  (b) for the planar and cylindrical geometries (solid 

and dashed lines, respectively). 
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Figure 8: Compacted and destruction regions for various explosive thicknesses under external pressures = 0.05P  Mbar (a) and 
= 0.075P  Mbar (b). The detonation velocity is = 5D  km/s. The solid, dashed, and dot-and-dash lines refer to the explosive 

thicknesses = 2e  cm, = 3e cm, and = 5e cm, respectively. The compacted and destruction regions are indicated by 1 and 2. 

 
It should be emphasized that this conclusion is valid for criterion (3). In derivation of (3), it was implicitly assumed that 
the interfacial melted zones are narrow, and the material in these zone rapidly solidifies as the particles in the bulk of the 
material undergo cooling. If this condition does not hold, then there can be a situation in which, by the moment of arrival 
of the unloading wave, the material in the interfacial zones still remains melted, which will prevent compaction. In this 
case, the dimensions of the destruction region will be dependent on the loading decay time and on the explosive thickness. 
The explosive thickness should be large enough to prevent shock wave damping in the powder and to enable complete 
pore collapsing in the sample. Fig. 9, a and b shows the density isolines for the explosive thickness = 0.5e  cm and the 
external pressure = 0.05P  Mbar. Parts a and b of Fig. 9 depict the data for the axisymmetric and planar problem 
statements. Damping of the incident shock wave is evident from the figure. This results in incomplete powder 
compaction; the latter is clear from Fig. 10, which shows the distribution of porosity 1m  across the sample. The solid and 
dashed lines in this figure correspond to the planar case and to the cylindrical configuration, respectively. An analysis of 
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these graphs shows that, in the axisymmetric case, due to the wave divergence to the axis, the pores undergo collapsing in 
a larger volume than in the planar variant. 
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Figure 9: Density isolines for = 0.5e  cm: а) cylindrical 
configuration; b) planar statement. 

Figure 10: Porosity 1m  for = 0.5e  cm: solid line is planar 
statement; dashed line is cylindrical configuration. 

 
A twofold increase in the explosive thickness makes the decay of the incidence shock wave less intensive. The density 
isolines for the explosive thickness =1e  cm and the external pressure = 0.05P  Mbar are shown in Fig. 11, a and b. 
Parts a and b of this figure shows the calculation data for the axisymmetric and planar statements, respectively. It is clearly 
seen that in the case of cylindrical symmetry the shock wave bends near the axis, giving rise to an irregular reflection; in 
the planar configuration, a regular interaction occurs. Fig. 12, which depicts the distribution of porosity 1m  across the 
sample compacted in the cylindrical geometry (the dashed line in Fig. 12), is indicative of complete collapsing of pores 
over the entire thickness of the sample. In the planar case (see the dashed line in Fig. 12), the complete collapsing of pores 
is observed approximately over half the thickness of the sample, and the porosity near the symmetry axis is close to the 
initial one, 0

1m . 
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Figure 11: Density isolines for = 1e  cm: a) cylindrical 
configuration; b) planar configuration. 
 

Figure 12: Porosity 1m  for = 1e  cm: solid line - planar 
statement; dashed line - cylindrical configuration. 

The density isolines for the explosive thickness = 2e  cm are shown in Fig. 13, a and b. The external pressure was taken 
to be = 0.05P  Mbar. Parts a and b of this figure show the calculation data for the axisymmetric and planar statements. In 
the cylindrical case (see Fig. 13, a), an irregular reflection is clearly observed, whereas in the planar case (see Fig. 13, b) the 
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incident shock wave interacts with the rigid wall in the regular manner. In both cases, all pores in the sample collapse 
completely. 
Further calculations were carried out for the explosive thicknesses = 2e  cm, = 3e  cm and = 5e  cm. 
Fig. 14, a and b illustrates the effect of applied pressure on the thickness of the destruction region. In the calculations, the 
external pressures were = 0.05P  Mbar and  = 0.075P  Mbar, respectively, and the detonation velocity in both cases was 

= 7D  km/s. The solid and dashed lines show the data for the explosive thicknesses = 3e  cm and = 5e  cm. Regions  1 
and 2 are the compacted and destruction regions. As is seen from the figure, an increase in the external load causes no 
shrinkage of the destruction zone. Thus, it can be concluded that an increase in the decay time of the pressure applied to 
the sample resulting from an increase in the explosive thickness or in the value of the external load does not make the 
destruction zone shrink at a fixed propagation velocity of the detonation wave. 
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Figure 13: Density isolines for = 2e  cm: a) cylindrical 
configuration; b) planar statement. 

Figure 14: Compacted and destructed regions for two values 
of external pressure, = 0.05P  Mbar (a) and = 0.075P  Mbar 
(b). The detonation velocity is  = 7D  km/s. The solid and 
dashed lines show the calculation data for the explosive 
thicknesses = 3e  cm and = 5e  cm. 

 
As shown by above mentioned experiments an increase of the velocity of the detonation wave results in a considerable 
shrinkage of the destruction region. Fig. 15 show the compacted (1) and destructed (2) regions in the sample for the 
detonation velocities = 3D , 5, 7 km/s at a fixed explosive thickness = 5e  cm and at a fixed external pressure = 0.05P  
Mbar. The solid, dashed, and dot-and-dash lines show the calculation data for the detonation velocities = 3D  km/s, 

= 5D  km/s, and = 7D  km/s. 
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Figure 15: Compacted (1) and destructed (2) regions for three values of the detonation velocity. The solid, dashed, and dot-and-dash 
lines refer to = 3D  km/s, = 5D  km/s, and = 7D  km/s. 

 
The isolines of pressure for the indicated loading parameters are shown in Fig. 16, a-c. It is seen from the graphs that, as 
the shock-wave propagation velocity increases, the angle of incidence decreases and the reflected shock causes material 
destruction (see Fig. 16, b and c). As the velocity of the detonation wave increases, the angle of incidence of the incident 
shock wave increases and, as it is seen from Fig. 16, a, at the velocity = 3D  km/s the incident shock wave is close to the 
normal shock and the amplitude of the reflection wave is almost zero. 
Since in the case of cylindrical symmetry no regular reflection occurs, the final sample turns out to be inhomogeneous. 
Fig. 17 shows the distribution of the longitudinal velocity xu  (Fig. 17, a) and temperature T  (fig. 16, b) across the sample 
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in the compacted region for the detonation velocity = 5D  km/s. An appreciable non-uniformity in the distribution of 
parameters is evident from the graphs. Near the axis, both the velocity and temperature are greater than in the region 
some distance away from it. 
 

X, cm

Y, cm

8

0
0.5

X, cm

Y, cm

0.5

X, cm

Y, cm

2

0.5

а)

b)

c)

64

82 64

82 64
 

 
Figure 16: Pressure isolines: a) detonation velocity = 7D  km/s; b) detonation velocity = 5D  km/s; c) detonation velocity 

= 3D  km/s. 
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Figure 17: Predicted distributions of the longitudinal velocity xu  (a) and temperature T  (b) across the compacted region of the 
sample for the detonation velocity = 5D  km/s. 

 
Parts a and b of Fig. 18 show the distributions of the longitudinal velocity xu  and temperature T  across the compacted 
region of the sample predicted for the detonation velocity = 3D  km/s. Here, under identical loading parameters, the final 
sample is quire homogeneous. 
As a result, it becomes possible to obtain spatially uniform compacted samples. The necessary condition for this is 
sufficiently low detonation velocity, equal, for the aluminum powder, to 0.3 cm/ m sec. Here, on the one hand, 
compaction condition (1) should be fulfilled and, on the other, the uniformity of loading parameters across the sample 
should be ensured. 
Thus, the compaction of powders with low detonation velocities results in a considerable shrinkage of destruction zones 
in finish samples and in spatial uniformity of material parameters in their compacted parts. 
The performed analysis shows that an increase in the decay time of the pressure applied to the sample due to an increase 
of the explosive thickness or the external loading causes no shrinkage of the destructed region at a fixed propagation 
velocity of the detonation wave. Simultaneously, a decrease in the propagation velocity of the detonation wave results in 
an appreciable shrinkage of this region. 
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Figure 18: Distributions of the longitudinal velocity xu  (a) and temperature T  (b) across the compacted region of the sample for the 
detonation velocity = 3D  km/s. 

 
 

CONCLUSIONS 
 

oint theoretical and experimental studies have allowed to implement an approach that uses mathematical and physical 
simulation of shock-wave loading of powdered materials. A numerical simulation of shock wave propagation and 
deformation of the experimental assembly has been performed. 

The temperature distributions over the sample thickness in the compacted zone for several values of detonation velocity 
show that at higher speeds there is considerable heterogeneity in the temperature distribution over the sample thickness. 
Near the axis of the sample the temperature has a higher value than in distance from it. 
An increase in the pressure decay time due to increasing either the explosive thickness or the external loading intensity 
causes no shrinkage of the destruction zone at a fixed propagation velocity of the detonation wave. Compaction of 
powders with low detonation velocities results in a considerable shrinkage of destruction zones in finish samples and in a 
uniform distribution of material parameters in the compacted region. 
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ABSTRACT. When we want to compare the strength of two materials, we compare the table values of quasi-
static strength. However results of some experiments show that the strength ratio of the materials can change 
with increase in rate of loading. Such "substitution effect" of material strength at different strain rates is studied 
in this paper. It is shown that one material can have a lower dynamic strength for a higher static strength 
compared to the other material. Tests of two different materials, tests of mortar and concrete, and tests of 
concrete with different water content are considered. It is shown that load-carrying capacity of materials and the 
substitution effect of material strength in a wide range of loading rates can be predicted by the incubation time 
criterion. 
 
KEYWORDS. Static strength; Dynamic strength; Incubation time; Substitution effect. 
 
 
 
INTRODUCTION 
 

n selecting a material of construction an engineer is usually guided by the values of mechanical parameters obtained 
in quasi-static tests. A construction material is selected on the basis of its ability to withstand a certain stress (as one 
of the defining parameters). There is a set of test standards governing determination of the ultimate strength of a 

material under quasi-static tension, compression, bending, etc. However tests under dynamic loading conditions show 
essential differences of dynamic strength characteristics in comparison with those of quasi-static tests. 
These differences relate to the dependence of the mechanical characteristics on the history (duration, intensity, shape of 
the stress pulse, etc.) and method of loading [1]. A critical value can be considered as a material constant only under quasi-
static loading conditions. Under dynamic loading, the critical properties are characterized by very strong instabilities and 
can vary by several orders of magnitude. As a result, the dynamic system behaviour often appears unpredictable. 
Importance of studying rocks and concrete dynamic strength is not in doubt. These materials are highly suitable materials 
for building structures in the energy sector, for instance solar energy storage water tanks, nuclear containment vessels, etc. 
However, such civil and military infrastructures (e.g. buildings, barracks, bridges, tunnels, containment structures for 
hazardous, toxic and inflammable materials, etc) are susceptible to catastrophic failure under intense sudden overloading 
(e.g. due to blasts, explosions) for which they are not designed. A correct and rational analysis of dynamically loaded 
structures requires an understanding of the behaviour of the mechanical properties of materials at high strain rates. 
Therefore a study of the behaviour of rocks and concrete at high rates of deformation and fracture is necessary. 
Dependence of rocks on the extraction quarry, as well as numerous admixtures of concrete makes the research of strength 
characteristics a complex task. Moreover, various heterogeneity and impurity content can lead to various dynamic effects 
of fracture. 
One of such effects is the change of the dominant strength between the two materials. A material, which has a lower 
strength compared to another material in quasi-static tests, can have greater strength under dynamic loading. 
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In this paper we consider such "substitution effect" of strength of two materials in three cases: tests of two different 
materials; tests of mortar and concrete; tests of concrete under different environmental conditions. As experimental data 
we used the results of [2-5]. The theoretical analysis is based on the criterion of the incubation time of fracture [1, 6, 7]. 
This criterion provides correct transition between quasi-static and dynamic loadings. Introduction of the additional 
measured characteristic of strength (the incubation time) to the already known "quasi-static" parameter of strength (limit 
stress) allows us to build dependences of maximal fracture stress on a loading (deformation) rate without numerous 
experiments for any type and character of loading. 
 
 
THE INCUBATION TIME CRITERION 
 

he criterion of fracture based on the concept of incubation time, proposed in [6-8], makes it possible to predict 
the unstable behaviour of the dynamic-strength characteristics observed in experiments on the dynamic fracture of 
solids. The fracture criterion can be written in the following general form: 

 

α'( )1
1

t
'

ct

F t
dt

F 

 
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 
           (1) 

 

Here, F(t) is the intensity of the local force field causing the fracture (or structural transformation) of the medium, Fc  is 
the static limit of the local force field, and τ is the incubation time associated with the dynamics of the relaxation processes 
preceding the fracture. It actually characterizes the strain (stress) rate sensitivity of the material. The fracture time t* is defined 
as the time at which equality sign is reached in Eq. (1). The parameter α  characterizes the sensitivity of the material to the 
intensity (amplitude) of the force field causing the fracture (or structural transformation). Often, α = 1 gives a good 
agreement with test data. 
One of the possible means of interpreting and determining the parameter   is proposed here on the example of the 
mechanical rupture of a material. Let us assume that a standard test specimen made of the material in question is subjected 
to tension and is broken into two parts under a stress P arising at a certain time t = 0: F(t) = PH(t), where H(t) is the 
Heaviside step function. In the case of quasi-brittle fracture, the material would unload, and the local stress at the break 
point would decrease rapidly (but not instantaneously) from P to 0. In this case, a corresponding unloading wave is generated 
which propagates over the sample and can be detected by standard (e.g., inter-ferometry) methods. The stress variation at 
the break point can be conditionally represented by the relation σ(t) = P – Pf(t), where f(t) varies from 0 to 1 (Fig. 1) within 
a certain time interval T. 

 
Figure 1: Schematic of fracture kinetics at the place of rupture. 

 
The case f(t) = H(t) corresponds to the classical strength theory. In other words, according to the classical approach, 
rupture occurs instantaneously (T = 0). In practice, the rupture of a material (sample) is a process in time, and the 
function f(t) describes the micro- scale level kinetics of the transition from a conditionally defect-free state (f(0) = 0) to a 
completely broken state at the given point f(t*) = 1 that can be associated with the macro-fracture event. On the other 
hand, application of the fracture criterion  (1) to macro-level situation (F(t) = PH(t)), gives the time to fracture t* = T = τ at 
P = Fc. 
In other words, the incubation time introduced above is equal to the duration of the fracture process after the stress in the 
material has reached the static strength on the given scale level [9]. This duration can be measured experimentally by statically 
fracturing the samples and controlling the rupture process by different possible methods, e.g., by measuring the time of 
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the increase in pressure at the unloading wave front based on the recorded velocity profile of points (by interferometry) 
on the sample boundary. Below, we apply the general fracture criterion Eq. (1) to three problems. 
 
 
CALCULATION PROCEDURE 
 

et us consider application of the criterion (1) for calculation of carrying capacity of a material for different strain 
rate. Note that we understand the carrying capacity as the maximum stress that the material can withstand without 
fracture. However according to the criterion of incubatory time, dynamic strength is characterized by the 

incubatory time, but not the maximum stress. 

 
                                                       (a)                                                                                         (b) 
 

Figure 2: Test results of CARDIFRC in dynamic splitting [2]. a) Typical stress diagram (σ* is the maximum stress; t* is the fracture 
time). b) Maximum stress vs stress rate. 
 

For simplicity of understanding, we consider simple test methods, such as the split Hopkinson bar test (the Kolsky 
method) [10-12] and the spall test [13]. Such tests allow to carry out calculations in one-dimensional statement. For 
example, Fig. 2 shows the results of dynamic splitting of CARDIFRC (fibre reinforced concrete) [14], which were carried 
out in the Laboratory of Material Mechanics at the Nizhny Novgorod State University [2].  
The initial part of the loading branch (Fig. 2a) corresponds to the growth of the stress and strain. After the stress in the 
specimen reaches a limiting value, the material begins to fail rapidly accompanied by the formation of micro and macro 
cracks leading to a significant reduction in the stress with increasing strain. 
In spite of the scatter in the data, it is reasonable to conclude that the maximum stress increases with increasing stress rate. 
The observed time dependence of the maximum stress can be predicted on the basis of the incubation time criterion (1), 
which in this particular case of fracture takes the form: 
 

1
 ( ) 

t

c
t

t dt



 

             (2) 

 

where σ(t) is the time dependence of stress in point of fracture (the average stress in the specimen in case of the SHPB 
test); σc is static strength of the material for given type of loading; τ is the fracture incubation time of the material. 
For the well-known formulae from the Strength of Materials we can get a fairly simple relation to calculate the rate 
dependence of strength. These formulae allow engineers to obtain the values of the material strength, for a given character 
of loading and specimen geometry, without resorting to lengthy and laborious calculations. In our case, a simple analytical 
rate dependence of the limit stress can be obtained in the following manner. According to Fig. 2a an increase in the tensile 
stress with strain rate can be assumed to be linear until it reaches the maximum value σ*, so that 
 

( )  ( )    ( )t t H t E t H t                 (3) 
 

where   and   are the rates of growth of the stress and strain respectively, which we assume to be constant, E is the 
modulus of elasticity, and H(t) is the Heaviside function. Stress rate determines as the ratio of the maximum stress to the 
fracture time. We substitute this function into the stress criterion Eq. (2) and find the value of the time to failure t* (using 
the equality sign) and get 
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which yields the following expression for the limiting stress: 
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The incubation time of fracture τ can be determined by a semi-empirical method. The semi-empirical method consists in 
fitting of the calculated dependence *( )   to the experimental dependence *( )  by means of τ variation. The 
different algorithms (Gauss-Newton method, the steepest descent method, etc.) can be used to adjust the parameter 
values in the iterative procedure. The standard way of finding the best fit is to choose the parameters that would minimize 
the deviations of the theoretical curve(s) from the experimental points. Thereby nonlinear fitting was made to estimate the 
incubation time values which best describe the data.  
It is clear that the experimental values of the studied parameters can deviate from this simple dependence as a result of a 
scatter. Note that more complex schemes of loading (non-linear loading, three-dimensional problem, etc.) will lead to 
more complicated analytical expressions. It is more convenient to consider such problems numerically [15]. 
 
 
STRENGTH OF TWO DIFFERENT MATERIALS 
 

n this part, we compare the strength of gabbro-diabase and fibre reinforced concrete (CARDIFRC). Gabbro-diabase 
is dense, solid, homogeneous rock, characterized by a low degree of resistance to abrasion, frost resistance, and 
durability. CARDIFRC [14] is an ultra high performance fibre reinforced cement based composite characterised by 

high compressive and flexural strengths and high toughness. The tests have been performed using the modification of 
Kolsky method for dynamic splitting (the Brazil test) [16]. Detailed schemes of tests and results were presented in [3] for 
gabbro-diabase and in [2] for CARDIFRC. 
Fig. 3 summarizes the split tests of the fibre reinforced concrete and gabbro-diabase under quasi-static and high strain 
rates on a semi-logarithmic scale. The curves in Fig. 3 correspond to the calculation by Eq. (2) with the following 
parameter values: σc = 23 MPa and τ = 15 μs for concrete and σc = 18 MPa and τ = 70 μs for gabbro-diabase.  
It is clear from the picture that carrying capacity of both materials increases with the growth of loading rate. However 
although CARDIFRC has a higher quasi-static split strength than that of gabbro-diabase, its dynamic carrying capacity in 
splitting is lower at high stress rates (>102.5). 
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Figure 3: The split tests of CARDIFRC and gabbro-diabase; black squares are the experimental values for CARDIFRC [2]; black line 
is predictions of Eq. (2) for CARDIFRC (σc = 23 MPa and τ = 15 μs); red triangles are the experimental values for gabro-diabase [3]; 
and red dashed is predictions of Eq. (2) for gabbro-diabase (σc = 18 MPa and τ = 70 μs). 
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STRENGTH OF MORTAR AND CONCRETE  
 

he experimental study of the behavior of concrete and mortar at high strain rates in compression were conducted 
in [4]. Application of techniques of the split Hopkinson bar (SHPB) and plate impact have allowed us to consider 
a range of loading rates of 102-104 s-1 with an amplitude of pulses up to 1.5 GPa. Both materials have the same 

processing conditions, and the pure mortar has the same composition as the mortar phase in the concrete. The parameters 
of the test materials are shown in Tab. 1. The quasi-static compressive strength was determined according to the standard 
ASTM C39-96. The tests by the Kolsky method were carried out only for mortar. 
The results of these experiments are shown in Fig. 4. The curves correspond to the calculation of the maximum stress by 
the criterion (2). The value of the incubation time τ can be determined by Eq. (4) (see Table 1). We received the same 
incubation time for the mortar and concrete. However, despite the lower quasi-static strength compared with that of the 
mortar, the concrete can show greater strength under dynamic loading (at a given strain rate). 
 
 

 ρ, kg/m3 ν E, GPa σcomp
с , MPa τ, μs 

Concrete 2100 0.2 20 46 6.5 

Pure mortar 2600 0.29 45 30 6.5 
 

Table 1: Parameters of concrete and mortar. 
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Figure 4: Dependence of limit compression stress on strain rate. Black squares are the experimental values for concrete [4]; black line 
is predictions of Eq. (2) for concrete; red triangles are the experimental values for mortar [4]; and red line is predictions of Eq. (2) for 
mortar. 
 
The authors of the experiments [4] explain this effect by existence of hydrostatic pressure in a sample at high speeds of 
loading that leads to "compression" of microdefects and microcracks in material structure. As concrete can contain many 
defects (voids, cracks between the cement and the inclusion, etc.), its carrying capacity increases by limiting of the 
development of defects. 
Nevertheless, this effect can be explained with a simple argument, without assumptions about the mechanisms of 
deformation and fracture. Since the load is linear (see Eq. 3), at high strain rates the limit stress will depend on the 
modulus of elasticity, that is, the quasi-static strength does not affect on the strength under dynamic loading. Thus, we can 
set the carrying capacity of concrete by the elasticity of fillers. 
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STRENGTH OF DRY AND SATURATED CONCRETE 
 

n the paper [5] the influence of relative humidity of concrete subjected to a large range of stress rate was analyzed and 
discussed. The Hopkinson Bar Bundle (HBB) was realized to study the high loading rate tensile properties of plain 
concrete cubes. The experiments were carried out on concrete cured at three different curing conditions (drying at 50 

˚C; 20 ˚C - 50% RH; and saturated) and tested at three strain rates. The results showed that level of free water inside the 
concrete has an important influence on the carrying capacity of concrete.  
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Figure 5: Strain rate effect on maximum tensile stress of concrete with three different curing states. Black squares are the experimental 
values for dry concrete [5]; black line is predictions of Eq. (2) for dry concrete; red triangles are the experimental values for 50% RH 
curing concrete [5]; and red dash line is predictions of Eq. (2) for 50% RH curing concrete; blue circles are the experimental values for 
saturated concrete [5]; blue dash-dot line is predictions of Eq. (2) for saturated concrete.  
 

 Dry concrete 
50% RH curing 

concrete 
Saturated concrete 

σc, MPa 3.3 3.5 3 
τ, μs 12 22 44 

 

Table 2: Parameters of concrete at different curing conditions. 
 
The results of experiments (points) and the prediction of these results by Eq. (2) (curves) are shown in Fig. 5. The 
calculations were performed on the basis of the parameters in Table 2. It is clearly seen that the saturated concrete has a 
lower static strength (limit stress in statics) of the three materials, but one has a higher dynamic strength (the incubation 
time of fracture). Humidity increases the carrying capacity of concrete at high strain rates and vice versa in statics. 
 
 
CONCLUSIONS 
 

n this paper, we have analyzed the "effect of substitution" of load-carrying capacity of materials at different strain 
(stress) rate. The substitution effect means that in spite of the fact that static strength of one material is smaller than 
that of another one, its dynamic strength measured in terms of incubation time can be essentially higher. 

The analysis was conducted based on the incubation time approach, which allows one to separate static strength (limit 
stress in statics) and dynamic strength (the incubation time of fracture). As the incubation time is a material parameter, 
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independent of the loading history, we can estimate and compare load-carrying capacity of materials in a wide range of 
loading rates. 
Three cases of the substitution effect were examined. In the first case, two different materials were compared. It is shown 
that the fibre reinforced concrete (CARDIFRC) has a lower dynamic strength for a higher static strength compared to the 
gabbro-diabase. 
In the second case, mortar and concrete were considered. It is shown that the substitution effect is also in this case. 
Moreover the difference between load-carrying capacity of concrete and mortar can depend on the elasticity of aggregate 
in concrete. 
In the third case, concrete with different water saturation was studied. It is shown that saturated concrete has a greater 
dynamic strength than dry concrete. Thus, humidity can increase the carrying capacity of concrete under dynamic loads, 
and vice verse under quasi-static loads. 
Thus, one of the central problems in testing of dynamic strength properties of rocks and concrete can be associated with 
measurements of the incubation time parameter. Studies of strain rate (loading rate) phenomenon provide an effective 
opportunity to examine the incubation stage of the fracture process that is important for predicting critical parameters of 
external action in a wide range of loading conditions.  
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ABSTRACT. The hydrogen effect on the fracture toughness and fatigue crack growth behaviour in the 
martensitic high strength steel is investigated.  The secondary ion mass spectrometry method has been 
employed to analyse the distribution of hydrogen concentration in the zone of the crack tip and at its edges. 
Changes in hydrogen concentration are observed in the vicinity of the propagating crack tip and at a remote 
site. The hydrogen peak HC  is reduced and moves away from the fatigue crack tip with the increase of the 
maximum stress intensity factor maxK . The concept of damage evolution is used to explain fatigue crack 
propagation in connection with the hydrogen redistribution ahead of the crack tip. The physical failure criterion 
based on the hydrogen peak in the vicinity of the fatigue crack tip and the maximum stress intensity factor has 
been proposed. The criterion reflects changes in the hydrogen peak which resulted from the hydrogen 
redistribution due to the increase of the maximum stress intensity factor as the crack length increases under 
fatigue loading. 
 
KEYWORDS. Hydrogen distribution ahead of the crack tip; Fatigue crack growth; SIMS; Local failure criterion; 
High strength steel. 
 
 
 
INTRODUCTION 
 

ecently many works have been performed on the hydrogen embrittlement of high strength steels (e.g., [1-4]). The 
deleterious effects of hydrogen on the mechanical properties of high strength martensitic steels are known to have 
caused premature failures. For example, it was found that the threshold stress intensity factor in steels decreases 

drastically in response to increased dissolved hydrogen concentration (e.g., [2, 5, 6]). Although it has been reported that 
hydrogen degrades mechanical properties of metallic materials, there have been few studies on the effect of hydrogen on 
fatigue behaviour ([7-9]).   
It has been known that the fracture initiates in region of highly localized stress in which hydrogen is concentrated as a 
result of an augmented diffusion of hydrogen. To explain this phenomenon in the case of monotonic loading, a diffusion 
model was proposed by Liu [10] and developed by Kim et al. [3]  introducing a fracture criterion as the critical hydrogen 
concentration at a critical distance ahead of the crack tip. However, until recently only a few papers [11-13] have reported 
on the experimental distribution of hydrogen ahead of a crack tip. Under monotonic mixed (I/II) mode loading there are 
two hydrogen accumulation peaks ahead of the crack tip [13], which correspond to the maximum hydrostatic stress and 
the maximum equivalent plastic strain, respectively. The experimental results also revealed that hydrogen distribution in 
the vicinity of the fatigue crack tip is related to the stress-strain fields surrounding the crack tip [12, 14]. It should be also 
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noted that the most essential results on the numerical analysis of the effect of cyclic loading on hydrogen diffusion and 
concentration around a crack tip was published by A.T. Yokobori et al. [15]. 
In this research, experimental analysis of the distribution of hydrogen concentration  ahead of the crack tip in the 
martensitic high strength steel under hydrogen induced cracking and fatigue I mode loading conditions has been carried 
out. The generalized concept of damage evolution has been employed to explain fatigue crack propagation in connection 
with the hydrogen redistribution ahead of the crack tip. The physical criterion of local failure based on the hydrogen peak 
in the fracture process zone and the maximum stress intensity factor has been suggested. 
 
 
EXPERIMENTAL PROCEDURES 
 

he martensitic high strength steel is investigated to analyse the effect of hydrogen charge on the fracture 
toughness, the fatigue crack growth rate and the distribution of hydrogen concentration ahead of the crack tip. 
The fraction of retained austenite in the steel did not exceed 10%. Chemical composition of the studied steels is 

given in Tab. 1. Mechanical properties of the steel at room temperature are the following: the Young’s modulus E=210 
GPa, yield strength y =850 MPa and ultimate strength u =1150 MPa. 

 
C Cr Ni Si Mn P S 

0.06 16 7 <0.8 <0.8 <0.03 <0.02 
 

Table 1: Chemical composition of high strength steel (weight %). 
 
The hydrogen-charged and pre-fatigued specimens were employed. Hydrogen was artificially charged into specimens by a 
cathodic charging method before the tests. The solution used for the cathodic charging was a 10 mass% H2SO4 aqueous 
solution with an addition of SeO2. The current density was i=1 A/dm2 and charging time was 5 hours. Prior to immersing 
the specimen in the solution, its surface (with the exception of the crack surface) was coated with a chemically stable 
lacquer. 
The testes were carried out on HUS-1025 machine at room temperature in laboratory air. The fracture toughness CK  was 
measured using compact-tension specimens (60x60 mm) with 5 mm thickness according to the standard method reported 
in the ASTM Standard E399.  
The fatigue crack growth tests were conducted in order to clarify the hydrogen effect on fatigue crack growth behaviour 
and the distribution of hydrogen concentration ahead of the fatigue crack tip. Rectangular specimens 50 mm high and 5 
mm thick with an edge crack loaded in cantilever bending were employed. The loading frequency was 20 Hz with a 
constant amplitude sinusoidal waveform for the applied load. The stress ratio was maintained at R=-0.3. The length of a 
growing fatigue crack was recorded by an optical microscope. At the given load or fatigue crack length the specimen was 
unloaded and 10x10 mm templates, which included the zone of the crack tip, were cut out from it. Template sizes were 
caused by sizes of the analytical chamber of the mass spectrometer.  
The secondary ion mass spectrometry method was then used to analyse the distribution of hydrogen in the zone of the 
crack tip and at its edges [12]. The small size of the analysed area (5 m ) was ensured using a molybdenum diaphragm 
placed on the specimen. Prior to this, molybdenum was degassed in vacuum. The sensitivity of analysis for hydrogen was 
10-2 cm3/100 g. The reproducibility of the results of determining the intensities of the spectral lines was high. The mass 
spectrometric results were calibrated using reference specimens employed in installations for vacuum heating 
manufactured by LECO Company with linear grain sizes in the metal larger than 30 m . This eliminated the apparatus 
error in recording local hydrogen concentrations associated with segregations of hydrogen at the grain boundary in the 
reference specimen since the size of the ion beam in analysis was smaller than the size of the grain within which the 
distribution of hydrogen was usually uniform. It should be noted that secondary ion mass spectrometry was successfully 
employed for an analyses of the hydrogen distribution around the fatigue crack on type 304 stainless steel [16]. According 
to the reported data [17], the fatigue crack growth is accompanied by microplastic deformation and formation of 
hydrogen collectors and traps. This greatly reduces the diffusion mobility of hydrogen in the zone of the crack tip.  
The curve of hydrogen distribution through thickness for the specimen during removal of layers of the material was 
constructed (Fig. 1). It can be seen that the position of the maximum hydrogen concentration remains unchanged in 
specimens with different crack lengths. After finding the depth with the maximum concentration of hydrogen, the 
distribution of hydrogen ahead of the fatigue crack tip was measured at this depth. 
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Figure 1: Hydrogen distribution HC  through the thickness for the hydrogen-charged specimen at the distance of 30 m  from the 

crack tip ( max 20K  mMPa ). 
 
 

HYDROGEN CHARGING CONDITIONS 
 

he problem of the effect of hydrogen charging conditions on the character of the hydrogen distribution in the 
specimen with a crack has been analysed. For this reason, the fatigue pre-cracked CT specimens were hydrogen 
charged in the same solution as the main set of the specimens at different values of the current density over a 

period of 2 hours under constant static load corresponding to two applied (constant) stress intensity factor values 10K  
(Tab. 2).  
 

10K  ( mMPa ) 
Current density 

(A/dm2) 0/ CCH  

30 
6 
10 

2.9 
3.0 

50 
6 
10 

3.8 
3.8 

 

Table 2: The effect of hydrogen charging conditions on the hydrogen distribution ahead of the crack tip on crack extension line.  
 
The distribution of hydrogen ahead of the crack tip was measured by the same procedure as for the specimens after the 
fatigue test [12]. The values of the ratio of the maximum local concentration HC  of hydrogen ahead of the crack tip to the 

volume concentration 0C of hydrogen in the specimen were estimated. The results clearly show that the variation of the 

cathodic current density in these ranges does not influence on the 0/HC C  ratio which is determined only by the value of 

the applied stress intensity factor 10K . 
 
 
THE EFFECT OF HYDROGEN ON FATIGUE CRACK BEHAVIOUR 
 

 negligible crack tip plastic zone is created due to the hydrogen embrittlement, mechanical properties of the high-
strength steel and a low applied stress. It means that a linear elastic fracture mechanics methodology can be used 
to quantify the fracture toughness and fatigue crack growth behaviour. It follows that the maximum stress 

intensity factor must have an influence on fatigue damage evolution and the hydrogen distribution in the vicinity of the 
crack tip and, as a result, the physical growth of the fatigue crack.  
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Material ( )CK MPa m  
 

/
 n

m cycle
C

MPa m

 
 
  
 

m  * ( / )V micron cycle 1 

Uncharged 85 2.53·10-12 2.74 3.84 

Hydrogen-
charged 75 4.62·10-12 2.95 3.36 

 

Table 3: The fracture toughness and the fatigue crack growth rate parameters 

1/ The value of *V corresponds to the stress intensity factor range K varied from 20 MPa•m1/2 to 50 MPa•m1/2. 
 
To analyse the effect of hydrogen on the fracture toughness and fatigue crack propagation, the procedure, described in 
Experimental procedures section for hydrogen charged specimens and tests, has been employed.  Experimental results 
revealed that the fracture toughness CK  and fatigue crack growth behaviour in the high-strength steel are in general 
dependent on the hydrogen content (Tab. 3). The fatigue crack growth rate parameters C and m refers to the Paris 
relationship. The fatigue crack growth rate dNdl / versus the stress intensity factor range K curve in the uncharged 
specimen is lower than that in the hydrogen-charged specimens (Fig. 2). The fatigue crack in the hydrogen-charged 
specimens propagates at the same value of dNdl / as in the uncharged specimen at lower (by 30-40%) values of K  in 
the near-threshold region. However, there is no significant difference in the fatigue fracture toughness fCK  of the 

uncharged and hydrogen-charged specimens. 
 

 
 

Figure 2: Fatigue crack growth behaviour: 1 - uncharged specimens, 2 -  hydrogen-charged specimens 
 
Experimental analysis of the distribution of hydrogen ahead of the crack tip under hydrogen induced cracking and fatigue 
I mode loading conditions has been carried out on a secondary ion mass spectroscope. The results on the distribution of 
hydrogen had been obtained and summarized for various periods of fatigue crack growth (or the maximum stress intensity 
factor) [12]. The concentration curves of hydrogen distribution in the sections normal to the crack surface and ahead of 
the crack tip on the crack extension line are plotted in Fig. 3 and 4, where HC  is the local hydrogen concentration. It can 
be seen that there is a hydrogen accumulation peak ahead of the crack tip, which is located on some distance ahead of the 
crack tip (Fig. 4). Changes in the hydrogen concentration were observed in the vicinity of the propagating crack tip and at 
a remote site. The hydrogen peak HC  is reduced and moves away from the crack tip as the maximum stress intensity 

factor maxK  increases. The hydrogen concentration gradient also decreases. At the same time, the hydrogen concentration 

far away from the crack tip is increased by increasing the value of maxK . So, the values and sites of hydrogen accumulation 
under fatigue loading are dependent on the magnitude of the maximum stress intensity factor. 
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Figure 3: Hydrogen distribution HC  in the section normal to the crack surface at a distance of 3 mm behind the crack tip. 

 
 

 
Figure 4: Hydrogen distribution HC  ahead of the crack tip on the crack extension line: line 1 corresponds to max 20K  MPa m , line 

2 corresponds to max 68K  MPa m . 

 
The trend of the redistribution of hydrogen ahead of the propagating fatigue crack tip can be reflected on the basis of the 
generalized concept of damage evolution [12, 14].  
 
 
THE CONCEPT OF DAMAGE EVOLUTION 
 

he evolution approach [18] has been extended to deformation and fracture processes of a mechanical loaded 
system, i.e. “solid - damage”. It is assumed [14] that the accumulation of damage (the system state) is determined 
by the scalar 0 1    which is the single state variable q   . The controlling parameters   for deformation 

and failure processes of solids could be stress and strain, the stress intensity factor, temperature and other parameters, 
which are essential in the consideration of the damage accumulation process. 
It is postulated that deformation and fracture processes are governed by some general functional law of damage 
accumulation [14]. For a simple case the damage evolution law can be formulated as  
 

 
n

d
A

d



      

                                                                                                      (1) 

 

where 0,  n 0A    are material (the “solid - damage” system) constants for the fracture process under study.. The 
evolution law (1) can be made more precise when the physical and mechanical aspects of a failure process are more clearly 
understood by examining the fracture mechanisms of the solid and the type of loading under study. The value of   
decreases with an increase of time   during the process of the accumulation of damage in a solid. The value 1   
corresponds to the non-damaged state of a solid when 0  , and the value c    corresponds to the critical state 

when c  , where c  is the critical time. So, failure occurs in a solid if the damage reaches the critical value c    at 

c  . The following relationship can be written as follows by integrating Eq. (1) from 1   to c   

T 

http://dx.medra.org/10.3221/IGF-ESIS.24.13&auth=true
http://www.gruppofrattura.it


 

Yu. G. Matvienko, Frattura ed Integrità Strutturale, 24 (2013) 119-126; DOI: 10.3221/IGF-ESIS.24.13                                                                 
 

124 
 

  1

0

1 1
c

n n
c A n d



                                                                                         (2) 

 

Eq. (2) is transformed into the following equation for the determination of the critical time c  
 

 
 

11

1

n
c

c nA n








                                                             (3) 

 

if the controlling parameter   is constant. Taking into account Eqs. (1) and (3), the cumulative damage law is expressed 
in the integral form 
 

 
0

1
c

c

d
 


                                                               (4) 

 

The influence of the controlling parameter   on the critical time may now be analysed for damage evolution in solids. 

First it is assumed that the critical value c  is constant for the deformation and failure process under study, and the 
critical state of a damaged solid can be reached for various combinations of the controlling parameter and time  . It has 
been suggested therefore that the critical value c  [Eq. (2)] is also reached when the controlling parameter   is equal to 

the critical value c  at some fixed time (or a unit of time) *
c    , that is 

 

 1 *1 1n n
c cA n                                                                                         (5) 

 

The evolution equation at c =const is derived from Eqs. (2) and (5), namely 
 

*

0

c

n n
cd



                                                                                         (6) 

 

This equation may be rewritten at const   as 
 

*

n

c
c

 


 
  

 
                                                             (7) 

 

The damage evolution equation allows one to estimate the critical time for a solid to reach its critical state under the given 
controlling parameter for the deformation and fracture processes being studied. 
It should be noted that exponent n in basic equations has different physical meaning for different physical phenomena 
and corresponding equations. What is why, this exponent has different table of symbols for below-mentioned equations.  
 
  
THE FAILURE CRITERION 
 

ccording to the above-mentioned concept, using the maximum stress intensity factor maxK as the controlling 

parameter   and replacing critical time c  with the critical hydrogen accumulation peak (maximum local 

hydrogen concentration) maxHC  ahead of the crack tip, the damage evolution equation can be written as 

 

 max max
b

HC K const                                                                                 (8) 
 

It is assumed that the shape of the loading cycle is not changed. Eq. (8) gives the physical criterion for local fatigue failure 
in the fracture process zone, i.e. in the vicinity of the fatigue crack tip, and reflects changes in the hydrogen peak which 
resulted from the hydrogen redistribution due to the increase of the maximum stress intensity factor as the crack length 
increases under fatigue loading. This conclusion is in agreement with the observed experimental results (Fig. 4) for 
different values of the maximum stress intensity factor. 
Fatigue crack growth behaviour can be described by the following equation [12] 

A 
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 * 'max
max1

k

k k

fC

Kdl
V C R K

dN K

 
    

 
                                                        (9) 

 

where  * ' 1
k k

fCV C R K  , 'C and k  are constants of the material and loading conditions. The process of local failure in 

the vicinity of the crack tip has interrupted nature and the crack propagates by means of discrete extension (crack jump) 
by the value ia . After the jump, further crack propagation requires a certain time (cycle N of loading) to accumulate 
fatigue damage and redistribute hydrogen in the vicinity of the crack tip until the condition (8) is reached. Thus, the 
parameter * /iV a N    is connected with the discrete nature of fatigue crack propagation. The value *V slightly 
decreases for the hydrogen-charged specimens (Tab. 3). This variation is associated with a reduction of the crack 
increment ia in the hydrogen-charged specimen rather than with an increase of N . It should be also mentioned that in 
the presence of a microcracks, the steel with internal hydrogen can be regarded as a system subjected to the effect of an 
external hydrogen environment. In this case, the localisation of deformation caused by hydrogen can be considered as one 
of the hydrogen embrittlement mechanisms [17]. It is obvious that more intensive localisation of deformation caused by 
interaction of hydrogen with moving dislocations and by activation of their sources will be also observed if the steel 
contains steep hydrogen concentration gradients. 
 
 
CONCLUSIONS 
 

he effect of hydrogen, which was artificially charged into specimens by a cathodic charging method, on the 
fracture toughness and fatigue crack growth behaviour in the martensitic high strength steel has been investigated.  
The distribution of hydrogen concentration in the zone of the fatigue crack tip and at its edges has been analysed 

by the secondary ion mass spectrometry method. The following conclusions can be drawn from the present study.  
The variation of the cathodic current density does not influence on the ratio of the maximum local concentration HC  of 

hydrogen ahead of the crack tip to the volume concentration 0C of hydrogen which is determined by the value of the 

applied stress intensity factor 10K . 
The generalized concept of damage evolution has been employed to describe fatigue crack propagation in connection with 
the hydrogen redistribution ahead of the crack tip. The failure criterion based on the hydrogen peak in the vicinity of the 
fatigue crack tip and the maximum stress intensity factor has been proposed. The local concentration of hydrogen in the 
vicinity of the crack tip is a function of the stress intensity factor, i.e. higher values of maxK  lead to the lower hydrogen 
peak. The criterion explains experimentally observed changes in the hydrogen peak which resulted from the hydrogen 
redistribution due to the increase of the maximum stress intensity factor as the crack length increases under fatigue 
loading.  
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ABSTRACT. On the basis of the developed model of quasibrittle medium the brittle and quasibrittle failure of 
composite ceramic materials with zirconium dioxide matrix and various percentage of hardening particles of 
corundum are studied numerically. The theory of the damaged media is applied in the calculations. It is shown 
that failure process educes in 2 stages - a relatively slow quasistationary phase of accumulation of inelastic 
deformations and damages in all hierarchy of scales and superfast catastrophic phase - a blow-up regime when 
the failure process reaches the macro-scale and there is a macro-crack formation. The failure process in the 
proposed model assumes to be completed when the damage function reaches its maximum value and the 
strength of the composite evolve to zero. 
 
KEYWORDS. Brittle and quasi-brittle failure; Quasistationary phase; Blow-up regime. 
 
 
 
INTRODUCTION 
 

onstructional ceramic composites have received a wide practical application in the industry because of their high 
unit strength, the raised toughness, hardness, crack stability, high resistivity to fatigue breakdown etc. 
Constructional ceramics on the basis of strong oxides of various metals (zirconium, aluminum, etc.) are capable to 

resist the intensive mechanical loads effectively. However the brittle properties of ceramic composites, their rather low 
stability to shock loads strongly confine the ranges of their application. Studying the mechanisms and features of brittle 
and quasibrittle failure of ceramic materials is one of the most urgent problems of modern fracture mechanics. 
According to the approach of physical mesomechanics [1] and ideas of paper [2] the loaded solid is the nonlinear dynamic 
system which evolution in fields of operating forces completely corresponds to the fundamental features of evolution of 
nonlinear dynamic systems. 
In the present paper the basic attention is given to the character of failure of quasibrittle solids and media – the presence 
of two stages of failure: rather slow quasistationary and superfast catastrophic stage – the blow-up regime according to the 
S.P. Kurdyumov terminology [3] as it is the fundamental feature of evolution of the nonlinear dynamic systems possessing 
the self-organized criticality [4]. 
One of the central problems of solid mechanics is a problem of the formulation of the fracture criteria or conditions 
when the crack formation starts. Many papers are dedicated to the problems of crack-growing in non-homogeneous 
media, such as rocks [19], polycrystalline materials or ceramics and ceramic composites [18]. For example, in paper [21] 
the equation of state is built on the basis of crack interaction and crack density accounting and strain rate dependency and 
used for simulation of macroscopic stress-strain curves. Such approach gives good qualitative and quantitative results in 
calculation of the degradation stage in stress-strain curves, strain rate dependency and defects density evolution. However 
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in the present paper the main accent is made on studying the transition from the quasistationary phase of media evolution 
to the blow-up regime which is assumed as local failure at crack formation which applies to be the new vision of the 
failure process. 
In the present paper these problem also dares on the basis of ideas of the mathematical theory of evolution of loaded 
solids and media [2]. 
According to traditional ideas of fracture mechanics a local fracture in solids occurs when a maximum load is reached. All 
experience of application of this approach to the problem of limiting design has shown its comprehensible working 
capacity and correctness for many practical problems. However we can tell nothing about the failure process especially 
about its forecast. If a certain constant or changing load is enclosed to solid it is only possible to calculate the conforming 
stress-strain state and to answer a question whether a maximum load is reached or not somewhere. Such answers appear 
useful and sufficient in a number of important engineer cases but to tell something about the mechanisms and scenarios 
of failure locus formation is impossible. 
The fundamental law of fracture of any materials has been investigated in the 70s of the XX century: the final failure (not 
only fatigue but any) precedes more or less significant preparatory stage. For example for the silicate glasses which failure 
was considered as instant the speed of crack propagation in the beginning of failure has appeared in thousands times less 
than at the final stage [5] and this is with the fact that the whole failure process takes some ms. 
Rapid development of ideas and methods of nonlinear dynamics at the same years and the next decades have allowed the 
group of S.P. Kurdyumov to formulate the new concept of superfast catastrophic stages of evolution of nonlinear systems 
– the blow-up regimes [3] and both analytically and numerically to study the kinds and features of these regimes. 
These ideas and the qualitative results obtained on their basis are the key-ideas for understanding the failure process. In 
the considered case of brittle or quasibrittle failure (and also the failure of any materials and constructions, plastic metals, 
brittle concrete, rocks, geomedia etc.) the preparatory process of accumulation of inelastic deformations and damages in 
brittle media is localized in certain areas. This preparatory quasistationary stage because of the self-organized criticality of 
solid as nonlinear dynamic system passes sooner or later in the superfast catastrophic stage – blow-up regime by S.P. 
Kurdyumov [2, 4, 7]. It is clear that any failure forecast basically is not possible without studying the features of 
development of these stages and conditions of transferring of one stage of sustainable development of failure to unstable 
superfast regime. 
 
 
MATHEMATICAL STATEMENT OF A PROBLEM. MODEL OF QUASI-BRITTLE MEDIUM 
 

ccording to the evolutionary concept of the description of inelastic deforming and the subsequent failure 
processes [2, 4, 6-9] the full set of equations includes: 
1. Fundamental conservation laws: 

 

 Mass  
    0

d
div

dt
         (1) 

 Impulse  
 


 


iji
ij

d
F

dt x
        (2) 

 Energy  






1 ij

ij

ddE

dt dt
         (3) 

 

where   is the material density, i  is the i-component of the speed vector, iF  is the i-component of the massive force,  
is energy, t  is time. 
2. The evolutionary equations of the first group which have been written down in the relaxation form in which increments 
of stresses    ij t  are proportional to increments of total deformations T

ij  and relax proportionally to the 

development of inelastic deformation P
ij . The procedure of stresses reduction to the instant limiting surface means the 

instant stress relaxation on each time layer to some dynamic equilibrium state defined both by relaxation and the rate of 
strength and elastic parameters of medium degradation. At          0P T

ij ij ij , there is a relaxation, at         0P T
ij ij ij  

and stresses steepen: 
 

                 2T P T P
ij ij ij ij         (4) 
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  

     
 1
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ji

ij j ix x
          (10) 

 

  is the rate of volumetric strain,  ,  are the Lame constants, K  is the bulk modulus, P  is pressure, ij  are the 

components of deviator stress tensor, 
D

Dt
is the co-rotation derivative of Yauman considering the rotation of the medium 

elements at deforming,  ij  are the components of the rotation strain rate tensor. 

3. The problem of the evolutionary equations of the second group is the definitions of rates of inelastic deformations in 
the Eq. (4). Generally it is the kinetic equations setting the rates of inelastic deformations and providing the relaxation of 
elastic stresses in (4). In the present paper the components of rates of inelastic deformations tensor are identified 
according to the theory of plasticity and instant stress relaxation on each time layer. 
The limiting surface of stresses is written down in the form of Mises-Schleicher that allows to satisfy the requirement of 
generalization of plasticity and brittle failure conditions: the form of a limiting surface and its properties are completely 
defined by three parameters of a stressed state - octahedral normal stress  octahedral shear stress  oct  and a kind of the 

stressed state   (parameter of Lode-Nadai) 
 

    1 2
1 2( ) ( )

3 ij ijf J J Y          (11) 
 

where f  is the yield surface and 1 2,J J  are the first, the second invariants of the stress tensor and Y  - current strength. 
Eq. (11) is a generalization of plasticity criterion of Coulomb-More. The model of Drucker-Prager-Nikolaevskiy with non-
associated flow law is taken as basis allowing describing the dilatation and internal friction processes independently. In the 

case of non-associated flow law the plastic potential   ijg  does not coincide with a function of plasticity and for a 

limiting surface (11) is written as follows [10]: 
 

        
 

2 1 12
3 3ijg J J Y J const         (12) 

 

Components of rates of inelastic deformations tensor will be defined as follows: 
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where   is the plasticity multiplier in the theory of plasticity. 
 

   1
2

1 22 ( )P PI I            (14) 
 

That allows to establish the connection between volumetric 1
PI  and shear 2

PI  components of inelastic strain (14) [7] where 
  is a speed of dilatation. However the model is not bound yet to the kind of stressed state. That dependence will be 
defined within the function of damages accumulation. 
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4. Failure in the educed approach is considered as a process of avalanche degradation of material strength to zero at 
macro-cracking during the superfast catastrophic stage of stress-strain state evolution which is the closing stage of pre-
failure. However the medium remains consolidated macroscopically hence all the equations of inelastic deforming (1) ÷ 
(14) are fair. There is no need to introduce the strength parameters defining the “limiting” state of material into model. 
According to the ideas of the present paper the “limiting” condition should be formed in the loaded medium during the 
process of inelastic deformations and damages accumulation. It is necessary to set the initial strength of the material . 
According to the classic ideas of the failure kinetic concept (N.S. Zhurkov, A.V. Stepanov, R. Bekker, Ja.I. Frenkel and 
others) [11-15] to lead an ideal crystal to a state of local shear it is necessary to make a work proportional to the difference 

of free energies F of an ideal crystal and a crystal in current state 
 





0

2 2

( )~
2

A V  (V - volume, σ0 – the value of 

theoretical strength,   is the current stress). 
Orowan modified this idea and put the critical increment of energy depending only on the size of plastic (inelastic) 

deformation [16] 





2
p2( )~h V

2
F , where h is the strain hardening parameter, p  is the accumulated inelastic strain. 

We use this idea and put the function of medium degradation   ( , , )pD D t  in the form of dependence on inelastic 

deformation accumulated by medium     0p cur  and the kind of stressed state: 
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


 


2 3

1 3

2 1
S S
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           (16) 

 

cur  is the current mean of total deformation intensity, 0  is the initial deformation when the damage accumulation 

begins. 0  is different for areas of compression and tension and makes 0.2 - 0.5 from the elasticity limit depending on a 
solved problem. Such approach allows accumulating the damages at macroscopically elastic stage of deforming. Rates of 
damage accumulation for local tension-shift areas where μσ<0 are essentially bigger than in compression-shift areas where 
μσ>0. This process is controlled by the parameter   * *( )  in (15). Thus the medium response (its current strength) is 
formed during loading. Hence the strength and elastic parameters will degrade essentially faster in those areas (particles) of 
medium where the Lode-Nadai parameter μσ <0 that corresponds to tension-shift areas. This response depends also on 
the loading history. Changing the deforming regime from tension-shear to compression-shear might mean the transition 
to another scenario of evolution and regeneration of the medium properties. ε0* is the model parameter, t* makes sense of 
the characteristic time of the process, 1 2 3, ,S S S  – are the main deviatric stresses. 
Calculations were made in 2D under the condition of a plane deformation and 3D with the scheme of the second order of 
accuracy described in detail in paper [17]. 

 
 

THE NUMERICAL SIMULATION RESULTS OF BRITTLE AND QUASI-BRITTLE FAILURE OF COMPOSITE 

CERAMIC MATERIALS 
 

he model specimens of ceramic composites with zirconium dioxide 2ZrO  matrix and various content of 

hardening particles (15% (a) and 40% (b)) of corundum 2 3Al O  are represented on Fig. 1. The content of the 
second phase was chosen as 15% and 40% to study the qualitative changes in the mechanical behavior of the 

composites. The presented structural models were developed on the basis of the well-known typical quasi-homogeneous 
distribution of the hardening particles within the matrix. In paper [22] the experimental study of uniaxial compression of 
porous ceramic on the base of zirconium dioxide was carried out and it’s structure and phase content were also studied. 
Using the observations of structure from several papers of the author of paper [22] we developed the model of ceramic 
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composites presented on the Fig. 1. The uniaxial compression of specimens was carried out in the calculations. The 
dimensions of the specimens are 100 140 m . 
In paper [18] it has been shown that in loaded ceramic composites there are local areas of tension stresses on the 
interphase borders. Formation of mesocracks occurs in these areas of tension stresses. We will show that failure of 
composites in the majority of cases occurs in tension areas. It is caused by two reasons: 1) the presence of structural 
heterogeneities always leads to the formation of local tension areas in composite; 2) strength of quasibrittle materials at 
tension is essentially low than at compression. Rates of damages accumulation in tension areas are also essentially bigger. 
In Tab. 1 the physical-mechanical properties of the materials compounding the composite are presented. 
 

     
 

                                                       (a)                                                         (b)                                                (c) 
 

Figure 1: The model specimens of composites with 15% (a) and 40% (b) content of the hardening particles and the principle loading 
scheme (c). 

. 
Parameter Material 

density, 
kg/m3 

Bulk modulus, 
MPa 

Shear modulus, 
MPa 

Strength, MPa    
speed of 
dilatation 

 , internal 
friction 

coefficient 

2ZrO  5700 1.433  510  0.6615  510  2100 0.22 0.62 

2 3Al O  3984 3.46  510  1.6  510  3740 0.12 0.6 
 

Table 1: The physical-mechanical properties of the materials compounding the composite. 
 
The macroscopic behavior 
The    diagrams for composite specimens are shown under various loading conditions on Fig. 2 - ideal sliding (Fig. 
2a) and friction (Fig. 2b) on the loading border. 

 
                                                               (a)                                                                                       (b)            
 

Figure  2: The    diagrams in case of: ideal sliding (a), friction (b) on the loading border. 
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The general for two variants of loading is the strength evolution of composites in the blow-up regime at final stage of 
deforming. Steady slow accumulation of inelastic deformations and damages at lower structural levels than considered 
macrolevel is replaced by the stage of unstable avalanche accumulation of damages (the blow-up regime) which occupies 
the tenth lobes of macrodeformation. It means that there is a localization of failure process in time. During the blow-up 
regime the global loss of stability, strength and elastic moduli of composites degradation to zero occur very quickly. 
In the case of ideal sliding on the loading border (Fig. 2a) the brittle failure of specimens occurs that is the sharp break on 
the    diagram and the system evolution is observed in the blow-up regime. The stage of the linear stress growth is 
followed by the blow-up regime with the global strength degradation. The feature of the deformation response in the case 
of friction on the loading border (Fig. 2b) is the presence of the stage of inelastic deforming of specimens because of the 
compression-shear areas formation near the friction border that sharply reduces the rate of damages accumulation. This 
process detains the phase of the blow-up regime and the global degradation of physical-mechanical properties of medium. 
Thus the stage of inelastic deformation occupies some % of macrodeformation. 
Other scenario educes in the case of a lateral pressure (Fig. 3). Constraint of the deformation leads to tightening of the 
catastrophic phase of evolution of the system. The strength resource is spent gradually in this case, the sequence of 
relaxations and growths of stresses is observed. The similar situation is observed in geomedia at so-called “slow” 
earthquakes when the features of constraint of deformation lead to the tightening of the local failure process. 

 
Figure 3: The    diagram in the case of the lateral pressure. 

 
The behavior on the meso-scale 
The part of specimen area reflecting the kind of the stressed state in a composite defined by the Lode-Nadai parameter is 
represented on Fig. 4. First of all the formation of a strip of the localized failure occurs in a narrow regions of normal 
tension stresses   1. 
 

 
 

Figure 4: The part of specimen area reflecting the kind of the stressed state in the composite defined by the Lode-Nadai parameter 

 . 

 
Besides in the generated mesocrack in the noted area the stressed state was replaced with compression-shears that means 
transferring to the compaction mode at the steepening of the deformation constraint due to the presence of the hardening 


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particles. At the same time in the generated mesocrack areas neighboring with the compaction zone are in dilatation 
regime. This process of failure delay in matrix shows one more positive role of the hardening particles. 
On Fig. 5 - 8 the calculated patterns of inelastic deformations in composites for three consecutive times 
(     1 2 34000 , 6000 , 8000t s t s t s ), the stressed state (by the Lode-Nadai parameter), damage function are presented 
at 2 variants of boundary conditions. 
In all presented cases the incipient states of specimens deforming accompanied with a vertical crack growing that also 
show the experiments [20]. 
Comparison of failure patterns of composites with various percentage of hardening particles shows the distinction in 
mechanisms of their destruction. In the composite with 40 % content of corundum the great number of hardening 
particles simultaneously creates the possibility for formation of the of local tension stresses areas on the phase border 
where the degradation of physical-mechanical properties of medium descends much faster. But also interferes with the 
macrocrack growing. On the pre-failure stage of the composite with 40% content of corundum the significant number of 
mesocrack is generated and this is more power-intensive process than formation of the small number of long cracks 
within the composite with 15% content of hardening particles (Fig. 5, 7). 
 

 
Figure 5. Simulation patterns: inelastic deformations (for three consecutive times), the stressed state (  ), damage function (D) in the 
composite specimen with 15% content of hardening particles in the case of ideal sliding on the loading border. 

 

 
Figure 6: Simulation patterns: inelastic deformations (for three consecutive times), the stressed state (  ), damage function (D) in the 
composite specimen with 40% content of hardening particles in the case of ideal sliding on the loading border. 

 

 
Figure 7: Simulation patterns: inelastic deformations (for three consecutive times), the stressed state (  ), damage function (D) in the 
composite specimen with 15% content of hardening particles in the case of friction on the loading border. 
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Figure 8: Simulation patterns: inelastic deformations (for three consecutive times), the stressed state (  ), damage function (D) in the 
composite specimen with 40% content of hardening particles in the case of friction on the loading border. 

 
Dynamics of crack growth in such composites (Fig. 6, 8) for three consecutive times shows that during the pre-failure 
stage there is a steady accumulation of inelastic deformations and damages in the whole considered volume of composites. 
The catastrophic superfast phase of system evolution – the blow-up regime occurs when the process of inelastic 
deformations and damages accumulation reaches the macrolevel. It is anticipated by the quasistationary preparation phase 
which is expressed in the formation of percolation net of mesocracks. At final stage of deforming there is a confluence of 
the generated mesocracks in main macrocrack. 
Other situation is observed in the composite with 15 % content of hardening particles. Propagation of the crack fastigium 
generated on the interphase border is stopped by the smaller quantity of hardening particles that is the growing crack 
approximately three times rarely encounters the resistance of hardening particles. Thus the average length of an individual 
mesocrack for the composite with 15% content of corundum exceeds the similar length of an individual mesocrack for 
the composite with 40% content of corundum in 1.5 - 2 times. Such distinction at mesolevel leads to the distinction at 
macrolevel in characters of destruction of two composites. In the composite with 15% content of the hardening particles 
the macrocrack also has mainly vertical character. The mesocracks growing from the opposite edges of the specimen 
getting to a region of a dynamic influence and start to render the interference against each other that leads to their 
confluence at a final stage of deforming. 
The particles flow characters in the composites are shown in the shift-fields. For example on the Fig. 9, 10 the shift-fields 
in composites related to the noted grain are presented for three consecutive times. 
 

 
     1t    2t    3t  

Figure 9: Simulation shift-fields for the composite with 40% content of the hardening particles in the case of ideal sliding on the 
loading border. 

 
Shift-fields possess a strongly pronounced heterogeneity. The evolution of the shift-fields in time shows that the stress-
strain state in the area of the fixed grain changes during the loading from compression on the incipient state of deforming 
then shears and formation of the curls and tension during the composite fragmentation. At main crack formation shift-
field shows the correlated locomotion of composite fragments in the normal direction to main crack. 
 

D3t2t1t

http://dx.medra.org/10.3221/IGF-ESIS.24.14&auth=true
http://www.gruppofrattura.it


 

                                                         P.V. Makarov et alii, Frattura ed Integrità Strutturale, 24 (2013) 127-137; DOI: 10.3221/IGF-ESIS.24.14 
 

135 
 

 

 
     1t    2t    3t  

Figure 10: Simulation shift-fields for the composite with 15% content of the hardening particles in the case of friction on the loading 
border. 
 

 
Figure 11: Damage function monitoring for several particles of the specimen which are in the region of a prospective dynamic 
influence in the composite with 15% content of hardening particles (a – in the case of friction on the loading border, b - in the case of 
ideal sliding on the loading border). 

 
The pattern of damage function monitoring for several particles in the specimen volume located in the region of the 
prospective mutual dynamic influence (Fig. 11) shows the presence of slow quasistationary phase of damage growth and 
superfast phase of evolution – the blow-up regime with the damage growth in the particle of the composite to it’s 
maximum value. From Fig. 11 also it is visible that damage in the particles consistently reaches the maximum value 
consecutively. The similar behavior can testify the migration of deformation activity. After the finish of the blow-up 
regime in one of the particles it begins in another (or the quasistationary phase in the next particle proceeds) and next the 
superfast phase of evolution occurs and there is a migration of deformation activity to the next particle. 

 
A generalization of the quasi-brittle medium on the case of 3D simulation 
The developed model of quasibrittle medium was applied for the 3D numerical simulation of the brittle failure of ceramic 
composites. The 3D stochastic structure of the composite with 15% content of the hardening particles with quasi-
homogeneous distribution was generated and presented on the Fig. 12. The same parameters as for the 2D simulation 
presented in Tab. 1 were applied in 3D simulation. The results of uniaxial compression at different boundary conditions 
are presented on the Fig. 13. 
From the simulation patterns presented on the Fig. 13 we can see that the generalization of the developed model on the 
case of 3D simulation qualitatively gives the same results. Particularly we have the formation of the meso-cracks on the 
incipient stages of deforming mainly co-directed with the loading force. At later stages of deforming we can see that the 
formation of bridges between meso-cracks leads to the macro-crack formation which can be either co-directed with the 
loading force or disoriented to some angle with the loading force. In several cases the growing meso-crack change it’s 
direction on the angle of 90  when it gets into the region of the high compression near the hardening particle; such 
behavior at crack growing was observed in the experiments [23]. 
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                                                                      (a)              (b) 
 

Figure 12: The 3D generated structural model of the ceramic composite with 15% contain of the hardening particles: the whole 
specimen (a) and a middle clip (b). 

 
 
 

         

(a) 
 

     

(b) 
 

Figure 13: Simulation patterns: cracking of the ceramic composite with 15% content of hardening particles (2 views from opposite 
sides) at ideal sliding (a) and fixing (b) on the loading border. 
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CONCLUSIONS 
 

n the considered model of medium the limiting condition in the loaded material is formed during loading and 
depends on the stressed state kind. 
Studying the laws of brittle and quasibrittle failure of composite ceramic materials with the usage of the developed 

model of quasibrittle medium it was shown that failure process always educes in two stages - slow steady accumulation of 
inelastic deformations and damages in all hierarchy of structurally-scale levels as the quasistationary phase is replaced by 
the blow-up regime – the superfast catastrophic phase of evolution of system when the failure process reaches the 
macrolevel. 
At ideal sliding on the loading border failure has a brittle character when the linear steepening of stresses is followed by 
the global loss of stability and degradation of elastic and strength properties of composites to zero. At friction on the 
loading border the stage of pre-failure inelastic deforming of the composites with formation of the local areas of the 
strength loss which occupies some percent of macrodeformation is observed. Thus the stage of evolution of system in the 
blow-up regime is tightened. 
In the case of constrained deformation the other scenario of the composite evolution is observed. The resource of elastic 
and strength properties of medium is spent gradually. During the general evolution of the system in the blow-up regime 
the sequence of steepens and relaxations of stresses on the    diagram is observed. 
It is shown that brittle and quasibrittle failure of materials descends mainly in the tension stresses areas where the rate of 
elastic and strength properties degradation of medium is bigger on several orders. At pre-failure stage the confluence of 
the mesocracks in percolation net evolves in the macrocracking at the final stage of deforming. 
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ABSTRACT. Preferred formulation of the problem in two space dimensions are described for solving the three 
fundamental equations of mechanics (conservation of mass, conservation of momentum, and conservation of 
energy). Models of the behavior of materials provide the closure to the three fundamentals equations for 
applications to problems in compressible fluid flow and solid mechanics. Models of fracture and damage are 
described. A caloric model of the equation of state is proposed to describe thermodynamic properties of solid 
materials with the phase transitions. Two-dimensional problems of a high-velocity impact of a space nuclear 
propulsion system reactor are solved. High-velocity impact problems of destruction of reactor are solved for the 
two cases:  
1) at its crash landing on the Earth surface (the impact velocity being up to 400 m/s);  
2) at its impact (with velocity up to 16 km/s) with the space debris fragments. 
 
KEYWORDS. Equation of state; Shock waves; High-velocity impact. 
 
 
 
INTRODUCTION 
 

he problem of quantitative description of the impact is a rather complex task, therefore it is connected with a 
whole scientific and technical research area rapidly developing lately. The bodies collision is accompanied by 
various processes, which emergence and relative role depend on the shape and physical characteristics of the 

objects and, more importantly, on the relative velocity of their collision. Moreover, the collision is often accompanied by  
penetration of one body into the other. In the process of high-speed collision, one or both of the bodies collided can 
collapse, scatter, or disperse, followed by dissipation of a significant amount of energy. 
In emergency situations, modern space vehicles with thermionic reactors “shoot off” (jettison) the nuclear powerplants (a 
simplified sketch of such a powerplant is shown in Fig. 1). There is a certain probability, however, that the reactor 
fragment containing the nuclear fuel reaches the Earth’s surface despite considerable thermal and mechanical loads in 
dense atmospheric layers. The velocity of the impact of the remaining part of the reactor system can reach 400 m/s.  
It is next to impossible to solve impact problems of real engineering objects though the computational engineering 
development level is rather high and fairly realistic mathematical models of material behavior are available. The reasons 
are the complicated spatial locations of the reactor fragments and the multiscale character of the problem. In such 
situations, the object considered is simplified, which makes it possible to construct a number of models aimed at studying 
the influence of the impact parameters on particular basic fragment of the object. 
The simplification used implies that the materials of small-scale parts were averaged inside the reactor zone in the additive 
approximation. The mass of the non-principal materials was assumed to be too small (beryllium, uranium dioxide and 
zirconium hydride compose 95—97 % of the reactor mass) to exert any significant effect on the shock-wave amplitude. 
As such a medium (mixture) does not have the volume defects, its specific volume on the wave front can be calculated as 

T 
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where Vi  is the specific volume of the i-th species under shock compression of each species separately, n is the number of 
species in the mixture, and i is the mass concentration, mi is the mass of the i-th species.  
Thus, our study is based on the assumption that the additivity rule is satisfied rather accurately. In the additive 
approximation, the volume of the shock-compressed mixture is assumed to be equal to the sum of the volume of the 
species obtained at the same pressure with their separate shock compression in the form of homogeneous monolithic 
samples.  
 

  
 

(a) (b) 
 

Figure 1: (a) Reactor "Topaz" with plane geometry; (b) Reactor "Topaz" with axial geometry. 
 

It was further assumed that the external elements of the structure burn down when the reactor enters the dense 
atmospheric layers, and the reactor remainder is an object with a complicated internal structure illustrated in Figs. 1. The 
reactor consists of a beryllium shell, uranium dioxide fuel cells, and zirconium hydride fillers. The end-face (longitudinal) 
and side impacts were considered. In the first case, we have a problem of an impact of the cylinder side surface onto a 
deformed target. A specific feature of this formulation of the problem is a multiply connected computational domain with 
a large number of contact surfaces. In the second case, the reactor model is formed as a ring-shaped structure, while the 
computational domain is again multiply connected and numerous contact surfaces are formed (Fig. 1).  
 
 
MATHEMATICAL PROBLEM 
 

he problem was solved in a formulation proposed by Wilkins [1] with the symmetric algorithm of contact 
boundary calculation [2]. Previously, we proposed the process of automatic construction of a triangular grid for an 
arbitrary multiply connected domain [3-4]. 

According to [1] we used Lagrange coordinates permits the history of mass elements to be followed where the integrated 
effects of plasticity and external loads change the material physical properties. In order to describe all the dynamic 
processes, firstly, the main conservation laws must be taken into account (mass, momentum, energy and equation of 
state), elastic and Prandtl-Reuss stress-strain relations: 
- equations for tracks of the material particles: i ix u  

- conservation of mass: 0 0V V   

- conservation of momentum: ,i ij ju   

T 
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- conservation of energy: ij ije     

- the strain rate tensor: ( ), ,0,5ij i j j iu u    

Stress tensor is represented in the conventional ,ij ij ijP s    where  

- ijs : deviator of the stress tensor  

- P: pressure  
- : density  
- u: speed 
Prandtl-Reuss stress-strain relations  

2 ,ij ij ijs d s G 
         

3
ij

ij ij ij


        

with the plastic strain increments given by Levy-Mises Equation  

2
0

2

3ij ijs s Y  

where G -shear modulus, 0Y  - dynamic yield stress, for definition scalar d  known procedure used to bring to the yield 
circle. 
The plastic flow will be described by conserving the deviator of stress tensor at the elastic limit. We will assume that after 
the deformation increase, the stresses change and exceed the yield circle. This contradicts the yield condition and cannot 
be realized. Instead, we will assume that a plastic flow takes place in the material and the stresses remain at the elastic 
limit, i.e. on the yield circle. 
The plastic part of the deformations is perpendicular to the yield surface that leads to limitation of exactly those stresses 
which are connected with this part of the deformations. Thus, summarizing the assumption about the yield, we can write 
down the yield condition in the terms of the stress tensor deviator. 
An algorithm realizing such a condition was proposed by M.L. Wilkins [1]. If a redundant change of the stresses in a 
particular element has led to a law violation, then the main values of the stress tensor deviator have to be corrected in 
such a way, that the condition is met again. 
 
 
EQUATION OF STATE  
 

e consider the three-term Mie-Grüneisen equation of state with the solid-phase free energy being determined 
as 

2/3

2
, , 0

0

( ) 1
( , ) ( ) ln

2x v l v e
V V

F V T E V c T c T
T V

        
   

              (1) 

 

where V  is the specific volume,  xE V  is the “cold” energy, T  is the temperature, , 3 /v lc R A  is the specific heat of 

the lattice at constant volume, A  is the mean atomic weight, R  is the gas constant,  V  is the Debye temperature, and 

, 0v ec  is the experimental value of the electron heat capacity under standard conditions. The elastic (cold) component of 

energy Ex(V) is related exclusively to interaction forces between the body atoms and is equal (including the energy of zero 
vibrations) to the specific internal energy at the absolute zero temperature.  
The thermodynamic model of a few-parameter equation of state is based on the dependence of the Grüneisen parameter 
  on the volume 
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where 0 /s s vK V c  , sK  is the adiabatic modulus of volume compression, vc  is the specific heat at constant volume, 

and ,0tP  is the thermal pressure in the initial state.  

The general expression for the volume dependence of the Grüneisen parameter has the form 

W 
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     (3) 

 

In Eq. (3), the situation value corresponds to the Landau-Slater theory [5, 6] at t=0, to the Dugdale-McDonald theory [7] 
at t=1, and to the free-volume theory [8] at t=2.  
To determine the zero isotherm, we equated the expression for the Grüneisen parameter (2) at the zero temperature 
( 0KT  ) to the expression for the generalized Grüneisen parameter (3): 
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     (4) 

 

Here, xa  is the value of the parameter 
0T

a   at the zero temperature in Eq. (2), which can be taken 

(0) 1 2 / ( 2 / 3)x sa a      as the first approximation. 
The differential Eq. (4) has an analytical solution for “cold” pressure and energy:  
 

  1 2 32 /3
1 2 2 1 2 1 3( ) ( ) ( ) 1 2 / 3 ( )tt

x xP V C V C H V E V C V t C H V C         (5) 
 

Using the definition of the Grüneisen parameter in the Debye approximation  ln ln
T

d d V    and Eq. (2), we 

obtain the characteristic Debye temperature on the volume:  
 

22
30 0

0
( / )

( )
( 1)

a V V V
V

a V
 

           
  

where 0 0( )V   is the Debye temperature at the initial conditions. 
The constants for Eq. (5) were determined and calculated in Fig.2 and [9]. It was also demonstrated there that the set of 
semi-empirical relations (1)-(5) describes the behavior of thermodynamic properties of solids within 5-10% in a wide 
range of pressures and temperatures. For the equation of state to be applied, it is sufficient to know only six constants 

0V ,  , tK , vc , 0 , and , 0v ec  corresponding to the values of these quantities under standard conditions, which can be 

found in reference books on physical and mechanical properties of substances. 
 
 

 
 

Figure 2: Adiabat solid. Experiments [10] 
 
 
MODIFICATION OF THE EQUATION OF STATE.  
 

hermodynamic and kinetic properties of liquids usually cannot be predicted theoretically on the basis of the first 
principles only. The calculation of phase diagrams is additionally complicated by the fact that the most important 
characteristics of phase transitions (heat of transition, difference in phase densities, etc.) are small differences in T 
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quantities that have large values and cannot be calculated with sufficient accuracy. Because of thermodynamic 
nonequilibrium typical for polymorphic transformations in shock waves, the general thermodynamic relations for phase 
transitions (equality of chemical potential in the region of simultaneous existence of the phases and Clausius-Clapeyron 
equation) as applied to shock-wave processes can only be used as approximate estimates. Therefore, beginning from the 
famous van der Waals’ paper, numerous attempts have been made to construct the dynamics of a liquid substance by 
extrapolating the known thermodynamic functions from different areas of the phase diagram. The absence of a 
commonly accepted thermodynamic model for liquids, which would be equivalent to the Debye approximation for the 
crystalline state, is a severe obstacle for constructing the equation of state for liquids.  
In studying particular models of thermodynamic states, it is clear that the usual classification of states in the region of high 
pressures and temperatures often loses its definiteness and becomes conventional, while the boundaries between the 
phases either disappear altogether or get fuzzy and actually correspond to continuous mutual transformation of states 
close to each other. The substance is both compressed and heated in the shock wave. In comparatively weak shock waves 
propagating over a cold substance, however, the pressure is mainly increased owing to compression. The pressure growth 
rate in relative units exceeds the temperature growth rate, and the increase in the “cold” compression energy is much 
greater than the increase in the thermal energy. As the shock wave intensity increases, the relative contribution of the 
thermal components of pressure and energy increases and becomes prevailing in strong shock waves.  
To take into account melting, the equation for a solid body (1) is modified. Though the phonon spectrum in the liquid 
phase is obviously a non-Debye spectrum (as the liquid does not have the far order, its molecules do not have forbidden 
states; hence, the molecular motion is not discrete), such a modified model can provide positive results at sufficiently high 
densities of the liquid near the line of phase equilibrium between the liquid and solid phases, because the motion of a 
liquid molecule within the first coordination sphere at rather high densities can be conventionally considered as vibrational 
motion. Thus, the higher the pressure, the more precisely the model is satisfied.  
The expression for the free energy ( , )LF V T  of a monatomic liquid in the so-called rough classical model of the 
harmonic oscillator has the form  

2/3

2
, , , 0

0,

( ) 1
( , ) ( ) ln

2
L

L x L v l v e
L

V V RT
F V T E V c T c T

T V A

             
     (6) 

 

where , ( )x LE V  is the “cold” component of the internal energy of the liquid and  L V  is the characteristic “Debye 

temperature” of the liquid.  
Formally, the expression for the free energy of the liquid (6) differs from the expression for the free energy of the solid (1) 
only by the presence of an additional entropy term cF RT A  . Nevertheless, the differences between the solid and 
liquid states are much more essential. Thus, different cold curves are used to describe the solid and liquid states. 
First, the major part of the entropy jump is related to the change in the solid structure due to the transition to the liquid 
state, which is caused by the loss of the far order and leads to the formation of a collective or configuration entropy (equal 
to zero in an ideal crystal) in thermodynamic models of the liquid. The configuration part of the entropy c cS F T    
characterizes the measure of liquid disordering and should remain a finite quantity (similar to the entropy of amorphous 
solids) as the temperature formally tends to zero 0T K . 
Second, the zero isotherm of the liquid is shifted with respect to the zero isotherm of the solid toward lower densities. 
The primary reason is that the liquid-phase density extrapolated to the domain of low temperatures is somewhat lower 
than the density of the solid substance.  
These principal differences between the thermodynamic descriptions of the liquid and solid states form the basis for the 
thermodynamic model modification considered in the present work. Thermodynamic functions of both solids and liquids 
are formally examined in the entire temperature range, including the domain close to 0T K . This is convenient for a 
unified description of both phases and allows functions typical for the solid state (such as the density at the 
temperature 0KT  , zero isotherm, etc.) to be used to describe the liquid state thermodynamics. We assumed that the 
physically meaningful branches are those at mT T  for the liquid state and at mT T  for the solid state ( mT  is the 
melting temperature).  
To “control” the configuration entropy we introduced a certain parameter sa , which has the meaning of the residual 
entropy at the temperature 0T K . Then, the entropy term of the free energy of the liquid in Eq. (6) takes the 
form /c sF a RT A  , which does not contradict the approximation of the “rough” model of the liquid at 1sa  . This 
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fitting parameter makes it possible to define correct values of the entropy and specific volume jumps on the melting 
curve.  
Considerations used to derive the expression for the Grüneisen parameter are not confined to the condensed phase. For 
this reason, all relations in contain only the general thermophysical properties of the material, which are defined and have 
an identical meaning both for the solid and form the liquid states. Therefore, repeating all transformations applied in solid, 
we can obtain equations for ( )xE V , ( )xP V , etc., whose functional form is similar to those for the solid state. The 
differences are only in the parameters determined by particular initial conditions. Therefore, the use of the modified 
equation of state requires only six constants, as the equation for the solid phase. The constants for several liquid metals 
can be found in. Moreover, the liquid model requires the jumps of the volume V  and entropy S  due to melting to be 
known.  
 
 
MELTING AT HIGH PRESSURES BEHIND THE FRONT OF A STRONG SHOCKWAVE 
 

he phase transition of the first kind (melting) is understood as an equilibrium transition of the substance from one 
phase to another with jump-like changes in the first derivatives of the Gibbs energy G  with respect to 
temperature and pressure, i.e., the entropy S  and specific volume V  experience jump-like changes during 

melting: 
 

p T

G G
S V

T P

 
 

        
   

 

 

The entropy of the liquid phase is always greater than the entropy of the solid; therefore, the entropy change during 
melting is always positive. The change in the volume during melting, however, can be either positive or negative. The 
inequalities 0S   and 0V  , which mean greater orderliness and density of the crystalline phase as compared with 
the melt, seem to be natural. They are valid for most substances and ensure a positive slope of the melting 
curve 0dP dT  . At the same time, there are some substances (e.g., gallium, bismuth, and water) with negative values of 

this derivative 0dP dT  .  
As the shock-wave pressure increases, the thermal energy imparted to the substance continuously increases and the 
transition of the initially solid substance to the liquid state is expected to start at a certain pressure level. The further 
behavior of the dependence ( )T P  along the dynamic adiabat can be understood by analogy with melting at atmospheric 
pressure, where an increase in the energy imparted to the substance starting to melt does not lead to an increase in 
temperature until the substance becomes completely melted. Further heating of the liquid is accompanied by an increase 
in temperature. A similar pattern should also be observed under shock compression, with the only difference that a certain 
increase in temperature can be expected in the domain of simultaneous existence of two phases (segment of the melting 
curve between the shock adiabats for the solid and liquid substances, in Fig. 3), because / 0dT dP   for the melting curve 
of the majority of substances (so-called “standard” substances).  
 

 
 

Figure 3: Melting curve and shock adiabats in the domains of the solid and liquid phases. 

T 
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To construct the melting curve, we use the phase equilibrium condition  
 

L S

L S

L S m

P P

T T

F F P V


 
   

                                                                                               (7) 

 

The last equation in (7) is the equality of the chemical potentials of both phases per 1 mole of the substance. The 
subscripts refer to the solid state (S), liquid state (L), and values on the melting curve (m).  

 
 

CALCULATION RESULTS OF EOS 
 

sing the system of equations of state of the solid (1) and liquid (6) phases and taking into account the phase 
equilibrium condition (7), we calculated the dynamic adiabats and the melting curves for several metals.  
The numerical calculations were performed by an iterative method. The shock adiabat of the solid body was used 

as the reference curve. In this case, we first assumed that 1sa   in Eq. (6) and chose a value of xa  in Eq. (4) that ensured 
the minimum difference between the calculated and the reference shock adiabats of the liquid. After that, for this value of 

xa , we found the value of as from the condition of identical chemical potentials of the solid and liquid phases for 
specified entropy and volume jumps on the melting curve. After that, the procedure was repeated with the new value of 

sa . 
The calculated adiabats with the phase transition in the T P  coordinates are shown in Fig.  3. The correctness of taking 
into account melting behind the shock-wave front in the equation of state derived is indirectly confirmed in the paper of 
Sakharov [11] who measured the viscosity behind the shock-wave front in aluminum and concluded that it remains in the 
solid phase up to pressures of 1 Mbar. The calculations show (see Fig. 4) that aluminum melting begins at the pressure 
P=1.07 Mbar. The transition of Al to the liquid state is finalized at the pressure P=1.2 Mbar.  
The calculation for lead shows (see Fig. 4) that Pb melting begins at the pressure P=0.36 Mbar. The transition of Pb to 
the liquid state ends at the pressure P=0.41 Mbar. The result obtained is in reasonable agreement with the data [12], where 
it was noted that melting in the shock wave begins when the mass velocity reaches ~ 650-700 m/s, which corresponds to 
pressures of 0.23–0.25 Mbar. In [13] experiment, lead behind the shock-wave front is already in the melted state at 
pressures of 0.4 Mbar.  
 

Figure 4: Shock adiabats of metals with allowance for melting. Figure 5: Shock adiabats of metals with allowance for melting.
 
In accordance with Urlin theoretical predictions [14], we performed calculations (Fig. 5), which show that melting exerts a 
minor effect on the adiabat shape in the P V  coordinates. The inflections on the diagram in Fig. 5 are so small (the 
melting zone is indicated by the asterisks) that they can be hardly distinguished visually. The values of these inflections are 
comparable with the error of data obtained in shock experiments. 
Now let us consider the melting curve found as the boundary between the phases with the corresponding equations of 
state. Fig. 6 shows the melting curve calculated for aluminum, the experimental data and Simon’s melting curve. The 
calculated melting curve lies somewhat lower than the optimal curve, and the error of calculating the temperature on the 
melting curve is smaller than 10% in the entire range of pressures considered.  

U 
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Fig. 7 shows the lead melting curve and the experimental data; the results are seen to be in good agreement. As an 
estimate, the figure also contains Simon’s melting curve for lead extrapolated to the range of high pressures. As the 
parameters were chosen on the basis of low-temperature experiments, Simon’s melting curve underestimates the melting 
temperatures in the high-pressure domain.  
Comparing the calculated results with available experimental data, we can conclude that the calculation accuracy is fairly 
high and the phase equilibrium condition (7) can be used for calculating the melting curves for the metals considered.  
 

  
Figure 6: Melting curve for Al. The solid curve is the present 
calculation; the experimental data  and  [15, 16]. The dashed 
curve is Simon’s melting curve. 

Figure 7: Melting curve for Pb. The solid curve is the present 
calculation; the experimental data are indicated by  ,  , and 
 [17-19]. The dashed curve is Simon’s melting curve. 

 
 
FRACTURE 
 

inematic strength characteristics include the limiting values of elongation (usually under uniaxial tension) and 
shear. Brittle materials are also destroyed by compressive strains. Kinematic characteristics are accumulated 
quantities incorporating the entire history of the process. The most frequently used quantities are the limiting 

elongation and shear strain. Finding these quantities involves calculation of the primary tensile and compressive strains  
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and also the shear strain 
 

1 2( )

2
  

  
 

If the tensile strains in the course of deformation exceed the limiting elongation *
1  (i.e., *

1 1 )   or the limiting shear 

strain * ,    * ,  then the element material is assumed to be fractured, i.e., it has no longer resistance to tension and 
shear, but still has resistance to compression. 
Force strength parameters include the limiting values of tensile [20], compressive, and shear stresses. If the stresses proper 
are used, then they are instantaneous criteria, i.e., as soon as the principal stresses exceed the limiting values, the element 
material is assumed to be fractured:  
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Most material, however, possess properties of plasticity and viscosity; therefore, their fracture requires a time interval 
during which the material is under overstrain. The code involves one of such criteria (it is demonstrated by an example of 
the principal tensile stress) [21]:  
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CONVERSION OF FRACTURED ELEMENTS TO PARTICLES  
 

f the element is at the boundary of the computational domain and the parameters of the material reaches a limited 
value, the material of the element is replaced by discrete particles. Radius of the particle is calculated from the 
condition of incorporating one or more of the particles in the element. Mass of the element is allocated between the 

discrete particles. For one time step is only one layer of boundary elements can be converted into discrete particles, as is 
that the velocity of the wave front of destruction does not exceed the speed of disturbances in the medium [2]. Fig. 8 
shows conversion of triangle elements (A, B and others) to particles [22]: 
 Element A is removed from the element grid; 
 Particle A is added as a particle node;  
 All of the element variables (stress, strain, damage, etc.) are transferred to the particle;  
 The mass, velocity and center of gravity of the particle node are set to those of the replaced element. The nodal 

velocity is obtained from the momentum of the element (three nodal masses and velocities);  
 The masses of nodes b, c and k are reduced by the removal of element A; 
 For the conversion of element B (which has two sides on the surface) to node B; most of the steps are similar to 

those used for element A. 
 

 
                                                                      (a)                                                                     (b) 
 

Figure 8: Conversion of triangle elements to particles: (a) interface nodes and elements before conversion; (b) interface after 
conversion of elements. 

 
 
TWO-DIMENSIONAL PROBLEM OF THE IMPACT OF A MODEL NUCLEAR POWERPLANT “TOPAZ” ONTO THE 

EARTH’S SURFACE  
 

s the first example, we consider an impact of the reactor on sandstone with the initial velocity of 400 m/s in the 
axial formulation. Realistic photo of the nuclear powerplant with thermionic reactors for space applications 
"Topaz" is illustrated in Fig. 9. Geometry of the reactors is illustrated in Fig. 1. In the case of the reactor impact 
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onto sandstone, the wave pattern is complicated by the fact that sandstone is destroyed by compressive stresses. This 
specific feature is induced by the inner structure of sandstone where strong crystals of sand are bound with brittle cement 
mass. As sand and cement have different compressibility, the shock wave forms shear stresses on interfaces between the 
media, which destroy the connections on the boundary, i.e., the resultant product is sand with a fine fraction of cement. 
Free sand exerts practically no resistance to shear strains. Thus, the impact compression forms a domain of a fractured 
material near the reactor-sandstone contact surface and, as a consequence, an unloading wave. The interaction of the side 
unloading waves and the unloading wave from the fracture zone leads to formation of a zone of tensile stresses with a 
higher amplitude, leading to fracture of the reactor materials (zirconium hydride filler and fuel cells). Beryllium shell 
fracture follows the mechanism of shear-induced quasi-static fracture. Fig. 10 shows the frames of the impact of the 
reactor model onto sandstone. 
 

 
 

Figure 9: Nuclear powerplant with thermionic reactors for space applications "Topaz". 
 

 
 

Figure 10: Impact of a reactor model with a sandstone plate surface. 
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Let us further consider the computation of the side impact of the nuclear powerplant. Fig. 11 shows the frames of the 
computed side impact of the reactor on a granite plate with an impact velocity of 400 m/s. This computation shows that 
the side impact of the reactor is more critical in terms of the impact velocity than the end-face impact because of higher 
strains in the contact area. While moving, the reactor filler (which is heavier) weighs on the beryllium shell, thus, inducing 
shear fracture in the contact area with the granite plate and inner fracture of the casing material, which violates the reactor 
proofness. Numerous cracks appear in the ZrH filler, which results in disintegration of fuel cells and, as a consequence, 
possible radioactive contamination of the place of incidence of the reactor. 
It should be noted that the results of calculations in the 2D planar case show a loss of symmetry in space. This is because 
the build perfectly symmetrical grid for complex bodies is not possible. Enough small deviations from symmetry lead to 
small differences in the strains, but near the critical values of this causes no symmetry of fracture in the space. To impact 
at the normal calculation can be performed in one half of that mathematically ensures symmetry of fracture. However, in 
practice we generally are not spatially symmetric picture of damage. 
 

 
 

Figure 11: Frames of the calculated side impact of the reactor model onto the granite plate surface 
 
 
CALCULATIONS OF REACTOR DESTRUCTION DUE TO ITS COLLISION WITH SPACE DEBRIS ON THE ORBIT 

(“TOPAZ”) 
 

n the first calculation, a two-dimensional reactor model interacts with a steel object 3 cm in diameter with a velocity 
of 11.7 km/s. This velocity is the most probable one for collisions with space debris fragments. The calculation is 
performed for a reactor model protected by the Whipple shield (aluminum sheet 2mm thick surrounding the reactor).  

The experiment shows that the kinetic energy of the object with such a velocity is sufficient for penetration through the 
target, acceleration of the expelled mass, and fragmentation of the impinging object and expelled part of the target. Shock 
waves arising during target penetration are reflected from free surfaces as unloading waves whose interference generates 
strong tensile waves in the materials of the Whipple shield and the impinging object. The parameters of the resultant 
waves are substantially higher than the strength characteristics of the materials, which leads to fragmentation of the 
structure and to formation of a cloud of fragments behind the target. The further interaction between the cloud and the 
reactor model proceeds in accordance with the following scenario: the cloud of fragments of the destroyed projectile 
almost with the initial impact velocity reaches the beryllium shell of the reactor. The remaining part of the cloud also 
contacts the reactor shell with a certain delay. Despite the presence of the Whipple shield, the kinetic energy of the cloud 
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of particles is sufficient for destroying the reactor shell made of beryllium. Multiple interactions of particles form a stable 
spherical shock wave, which destroys not only the shell, but also the zirconium hydride interior and uranium fuel cells. 
Fig. 12 shows the frames of the interaction of the cloud of fragments with the reactor. The presence of beryllium cylinders 
in the shell structure is manifested only as an additional stress concentrator and results in more expressed destruction on 
the shell edges, but exerts practically no effect on the overall pattern of shell failure. 
 

 
 

Figure 12: Photographic records of the impact of space debris with a reactor equipped with the Whipple shield. 
 

 
 

Figure 13: Photographic records of the impact of space debris with a reactor (axial formulation). 
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After that, the interaction of a steel object 3 cm in diameter impinging along the reactor axis with a velocity of 11.7 km/s 
is calculated. Fig. 13 shows the photographic records of the impact process. A powerful spherical shock wave propagates 
from the contact surface. Free surfaces at the periphery of interacting bodies allow the materials of these bodies to unload 
by acquiring velocities directed away from the “center of pressure”, thus forming zones of tensile strains and stresses. The 
destruction process begins. As the size of the impinging particle are small, as compared with the reactor size, an analogy 
can be found with a point source of pressure applied on the boundary of interaction of bodies, moving along the reactor 
axis. As the central part of the reactor has a complicated structure, multiple interactions of compression-unloading waves 
lead to its failure even at the stage of overall compression behind the shock wave front (mainly due to shear strains). The 
acquired velocity induces systematic tensile strains, which rapidly reach critical values, and fragmentation of the materials 
of the central part of the reactor. Massive deformation of the central part appreciably alleviates peripheral loads, which 
allows the beryllium shell to remain in the non-destroyed state. 
 
 
CONCLUSIONS 
 
1. Calculations show that the high-speed impact of space debris leads to full failure of the reactor. 
2. Impact of the reactor onto Earth’s surface at a speed of 400 m/s leads to decompression of the reactor and 

radioactive contamination of the fall. 
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ABSTRACT. The effect of processing parameters on the mechanical and metallurgical properties of dissimilar 
joints of AA6082–AA6061 produced by friction stir welding was analysed in this study. Different FSW samples 
were produced by varying the welding speeds of the tool as 50 and 62 mm/min and by varying the alloy 
positioned on the advancing side of the tool. In all the experiments the rotating speed is fixed at 1600rpm. All 
the welds were produced perpendicularly to the rolling direction for both the alloys. Microhardness (HV) and 
tensile tests performed at room temperature were used to evaluate the mechanical properties of the joints. In 
order to analyse the microstructural evolution of the material, the weld’s cross-sections were observed optically 
and SEM observations were made of the fracture surfaces. The corrosion tests of base alloy and welded joints 
were carried out in 3.5%NaCl solution at a room temperature. Corrosion current and potential were determined 
using potentiostatic polarization measurements. It was found that the corrosion rates of welded joints were 
higher than that of base alloy. 
 
KEYWORDS. FSW; Aluminium alloys AA6082-AA6061; Mechanical and metallurgical characterization. 
 
 
 
INTRODUCTION 
 

odern aerospace concepts demand reductions in both the weight as well as cost of production of materials. 
Under such conditions, welding processes have proven most attractive, and programs have been set up to study 
their potential. Car manufacturers and shipyards are also evaluating new production methods. Increasing 

operating expenses are driving manufacturers to reduce weight in many manufacturing applications, particularly in 
aerospace sector. The goal is to reduce the costs associated with manufacturing techniques to result in considerable cost 
and weight savings by reducing riveted/fastened joints and part count. One way of achieving this goal is by utilising a 
novel welding technology known as Friction Stir Welding (FSW). Friction stir welding is a solid-state joining process 
developed and patented by the The Welding Institute (TWI) in 1991 by Thomas et al and it is emerged as a welding 
technique to be used in high strength alloys (2xxx, 6xxx, 7xxx and 8xxx series) for aerospace, automotive and marine 
applications that were difficult to join with conventional techniques[1,2]. This technique is attractive for joining high 
strength aluminium alloys since there is far lower heat input during the process compared with conventional welding 
methods such as Tungsten Inert Gas (TIG) or Metal Inert Gas (MIG). This solid state process leads to low distortion in 
long welds, excellent mechanical properties in the weld and heat-affected zone, no fumes or spatters, low shrinkage, as 
well as being energy efficient. Furthermore, other cost reductions are realized in that the process uses a non-consumable 
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welding tool. The process was developed initially for aluminium alloys, but since then FSW was found suitable for joining 
a large number of materials.  
In FSW a non-consumable rotating tool with a specially designed pin and shoulder is inserted into the abutting edges of 
sheets or plates to be joined and traversed along the line of joint. The tool serves two primary functions: (a) heating of 
work piece, and (b) movement of material to produce the joint. The heating is accomplished by friction between the tool 
and the work piece and plastic deformation of work piece. The localized heating softens the material around the pin and 
combination of tool rotation and translation leads to movement of material from the front of the pin to the back of the 
pin. As a result of this process a joint is produced in ‘solid state’. During FSW process, the material undergoes intense 
plastic deformation at elevated temperature, resulting in generation of fine and equiaxed recrystallized grains. The fine 
microstructure in friction stir welds produces good mechanical properties. Fig. 1 shows a schematic diagram of the FSW 
process. 
 

 
 

Figure 1: Schematic diagram of the FSW process. 
 

Many papers are present in the literature regarding this field. Further to joints of similar alloys, FSW is being studied for 
welding dissimilar alloys which can be of particular interest in some industrial applications. Some works can be found in 
the literature [3–7], but data is still scarce on the characterisation of 6082-6061 joint type. Some authors have 
demonstrated that the microstructure of the weld nugget of strongly different aluminium alloys is mainly fixed at the 
retreating side of the material [3]. Murr et al. [8] showed the properties of dissimilar casting alloys by FSW. The micro-
structural evolution of dissimilar welds as a function of processing parameters has been widely studied in [9], showing the 
behaviour of AA6061–AA2024 materials. Dickerson et al. [10] found that friction-stir-welded butt joints are generally 
defect free if welding process conditions (welding speed and sheet thickness) are properly tuned within a ‘tolerance box’ 
for a particular alloy. It is not possible to assume that FSW will be free of flaws, however, because manufacturers may 
want to run FSW outside the tolerance box in order to increase productivity. 
The weld zones are more susceptible to corrosion than the parent metal [11-16]. Generally, it has been found that Friction 
stir (FS) welds of aluminium alloys such as 2219, 2195, 2024, 7075 and 6013 did not exhibit enhanced corrosion of the 
weld zones. FSW of aluminium alloys exhibit intergranular corrosion mainly located along the nugget’s heat-affected zone 
(HAZ) and enhanced by the coarsening of the grain boundary precipitates. Coarse precipitates and wide precipitate-free 
zones promoted by the thermal excursion during the welding are correlated with the intergranular corrosion. The effect of 
FSW parameters on corrosion behaviour of friction stir welded joints was reported by many workers [14, 16]. The effect 
of processing parameters such as rotation speed and traverse speed on corrosion behaviour of friction stir processed high 
strength precipitation hardenable AA2219-T87 alloy was investigated by Surekha et al. [16]. However, researchers have 
nevertheless been strained to study competent study of the mechanical properties in terms of UTS, YS and % elongation, 
microhardness test, fractography analysis, metallurgical properties, and corrosion behaviour and the main causes of 
developing defects with changing FSW parameters for a dissimilar aluminium joint of AA6082 with AA6061. Selection of 
process parameters is an important issue in the FSW process, particularly in the case of joining dissimilar alloys. In the 
present paper, the effect of different welding speeds on the weld characteristics of advancing and retreating side of 
AA6082-T6 and AA6061-T6 fabricated by a hexagonal tool pin profile is investigated.  
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EXPERIMENTAL PROCEDURE 
 

he experiments were conducted on the aluminium alloy AA6082-T6 and AA6061-T6, its chemical composition 
and mechanical properties are respectively presented in Tabs. 1 and 2.  
The rolled plates of 5mm thickness were cut into the required size (300mm×150 mm) by power hacksaw cutting 

and grinding. Square butt joint configuration was prepared to fabricate FSW joints. The initial joint configuration was 
obtained by securing the plates in position using mechanical clamps. The direction of welding was normal to the rolling 
direction. Single pass welding procedure was used to fabricate the joints. In present work hexagonal tool pin profile was 
used for the welds, made of cold work die steel. The tool dimensions are shown in Fig. 2. The machine used for the 
production of the joints was vertical machining centre. Different materials positioned on the advancing side of the tool 
allowed four different welding conditions described in Tab. 3. 
 
 

Chemical Composition 
Element Si Fe Cu Mn Mg Cr Zn Ti 

Required 0.7-1.3 0.5 0.1 0.4-1.0 0.6-1.2 0.25 0.2 0.1 

Contents 0.9 0.24 0.9 0.7 0.7 0.06 0.04 0.05 

Mechanical Properties 
Tensile Strength 

(MPa) 
Yield Strength 

MPa) Elongation (%) Hardness(HV) 

  Min Max Min Max Min Max   
295 -- 240 -- 8 -- 89 
324 332 308 319 9 12 90 

 

Table 1: Chemical composition and mechanical properties AA6082-T6. 
 
 

Chemical Composition 
Element Si Fe Cu Mn Mg Cr Zn Ti 

Required 0.4-0.8 0.7 0.15-0.4 0.15 0.8-1.2 0.04-0.35 0.25 0.15 

Contents 0.62 0.45 0.2 0.18 1.05 0.09 0.03 0.07 

Mechanical Properties 

Tensile Strength 
(MPa) 

Yield Strength 
MPa) 

Elongation (%) Hardness(HV)     

Min Max Min Max Min Max       
300 -- 241 -- 6 -- 95     
328.57 335.71 282 296 11 11.8 98     

 

Table 2: Chemical composition and mechanical properties AA6061-T6. 
 
 

Materials of Joints Rotational 
Speed (rpm) 

Welding 
Speed 

(mm/min) 

Tool 
Depth 
(mm) 

Downward 
Force(KN) 

 

6082T6-6061T6 1600 50 4.6 14  

6082T6-6061T6 1600 62 4.6 11  

6061T6-6082T6 1600 50 4.6 11  

6061T6-6082T6 1600 62 4.6 11  
 

Table 3: Welding conditions employed to join the AA6082–AA6061 plates. 

T 
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Figure 2: Geometry of the hexagonal tool pin profile used in the present study. 

 
All welded samples were visually inspected in order to verify the presence of possible macroscopic external defects, such 
as surface irregularities, excessive flash, and surface-open tunnels. By using Radiographic unit, X-Ray radiographic 
inspection was carried out on FSW samples. In radiographic test 6Ci & Ir192 used as radioactive source. The film used 
was Agfa D-4 and the radiographs indicated defect free weld as well as weld with defects like insufficient fusion and 
cavity.  
Mechanical properties of the test welds were assessed by means of tensile tests and the ultimate tensile stress (UTS) yield 
strength (YS) and % elongation were measured in the tensile test. Microindentation hardness test as per ASTM E-384:2006 
has been used to measure the Vickers hardness of FSW joints. The Vickers microhardness indenter is made of diamond in 
the form of a square-base pyramid. The test load applied was 100gram and the dwell time was 15 seconds. The 
indentations were made at midsection of the thickness of the plates across the joint. The tensile fractured surfaces were 
analyzed by using scanning electron microscopy (SEM). 
Metallographic specimens were cut mechanically from the welds, embedded in resin and mechanically ground and 
polished using abrasive disks and cloths with water suspension of diamond particles. The chemical etchant was the 
Keller’s reagent. The microstructures were observed on optical microscope.  
Potentiodynamic polarization tests were used to study the pitting corrosion behaviour of AA6082-AA6061 alloys. In the 
tests, cell current readings were taken during a short, slow sweep of the potential. The sweep was taken in the range of 
0.5V to 1V. The potentiodynamic scan was performed at scan rate of 0.5mV/sec. 
 
 
RESULT AND DISCUSSION 
 
Mechanical Properties 

he mechanical and metallurgical behaviour of dissimilar FSW AA6082–AA6061 was studied in this research. 
Transverse tensile properties of FSW joints such as yield strength, tensile strength, percentage of elongation and 
joint efficiency on transverse tensile specimens are presented in Tab. 4. The strength and ductility in the as-welded 

condition are lower than the parent metal in T6 condition. 
 

Material of 
FSW Joint 

YS 
(N/mm2) 

UTS 
(N/mm2) 

%       
Elongation 

% Joint 
Efficiency 

6082T6-6061T6 167 183 5.14 50.13-49.03 

6082T6-6061T6 101 170 4 46.57-45.57 

6061T6-6082T6 91 173 4.29 47.39-46.38 

6061T6-6082T6 95 154 4.43 42.19-41.28 

AA6082-T6 117 365 14 -- 

AA6061-T6 99.84 373.12 16.56 -- 
 

Table 4: Mechanical properties of dissimilar FSW joints. 
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The joints were produced with different alloy positioned on the advancing side of the tool. The joints were realized with a 
rotation speed of 1600 rpm and by changing the advancing speed from 50 to 62 mm/min. From the Fig. 3 it can be 
inferred that the welding speed and alloy positions are having influence on tensile properties of the FSW joints. 
  

 
 

Figure 3: Stress-Strain curves for dissimilar alloys AA6082-AA6061. 
 
 

The ductility is higher with decreasing the weld speed in the case of AA6082 on the advancing side, while it decreases in 
the case of AA6061 on the advancing side (Fig. 4). Such dependence of the strength on the material position was 
previously observed. The best conditions of strength and ductility are reached in the joints welded with AA6082 on the 
advancing side and weld speed of 50 mm/min. In joint efficiency table, the first efficiency represents the weld joint 
efficiency with AA6082 as a base metal and second efficiency represent with AA6061 as a base metal. The joint efficiency 
is higher with decreasing the weld speed in the case of AA6082 on the advancing side, while it is lower in the case of 
AA6061 on the advancing side. Fig. 5 shows the effect of welding speed on microhardness of dissimilar welds. The 
highest value of microhardness is reached in AA6061-6082 at welding speed of 50mm/min. The lowest value of 
microhardness is reached when the AA6061 alloy is on the advancing side of the tool at welding speed of 62 mm/min. 
When AA6082 alloy is employed on the advancing side of the tool, the microhardness appears more uniform, indicating a 
better mixing of the material as shown in Fig. 5. Furthermore, the maximum hardness values in the nugget zone 
correspond to the welds with AA6082 on the advancing side. 

 
 

 
 

Figure 4: Effect of welding speed on mechanical properties for dissimilar alloys 6082-6061. 
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Figure 5: Effect of welding speed on microhardness for dissimilar alloys 6082-6061 
 
Micro-structural Evolution 
Based on optical micro structural characterization of grains and precipitates, three distinct zones have been identified such 
as weld nugget zone, thermo-mechanically affected zone (TMAZ) and heat affected zone (HAZ). Microstructural details 
of the base metals (BM) and dissimilar joint are presented in Figs. 6-8. Examination of onion rings in the AA6082-
AA6061 at 50mm/min has shown that these onion rings are a result of shell extrusions in the dynamically recrystalized 
zone (DXZ). In AA6061-6082 at 62mm/min, it can be seen that the root flaw looks like a crack in the root part of the 
friction stir welds. The root flaw usually occurs if the pin length is too short for the plate thickness being welded, and this 
may also occur due to low heat input or incorrect tool orientation. 
 

 
 

Figure 6: Optical micrograph of base metals AA6082 and AA6061. 
 

 
 

Figure 7: Optical micrograph of AA6082-6061(A) at 50mm/min (B) at 62mm/min 
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Figure 8: Optical micrograph of AA6061-6082 (C) at 50mm/min (D) at 62mm/min. 

 
Fractography Analysis 
Examination of the tensile fracture surfaces of the FSW joints was done at low magnification as well as at higher 
magnification in order to identify the fracture mechanisms.According to Figs. 9-10, it may be predicted that the fracture 
mechanism in the mixing of these alloys will be dimpled rupture. The dimpled rupture fracture mechanism indicates that 
the fracture occurred with some degree of ductility, but the existence of the defect can always cause a stress concentration 
around the defect zone during the tension test; therefore, this phenomenon results in a strain locality that is higher than 
the yield strength in the turbulence zone of the weld, a sudden crack in the specimen, and consequently, a low elongation 
in the connection. 
 

 
 

Figure 9: SEM images of tensile fracture surface of 6082-6061 at 50mm/min. 
 

Corrosion Behaviour 
The potentiostatic polarization curves for the base alloy and FSW samples in 3.5%NaCl at room temperature are given in 
Figs. 11-13. It is shown that the corrosion behavior of base alloy significantly varies from that of welded joints. 
From Tab. 5 it is observed that the pitting potentials of corrosion tested samples at various process parameters clearly 
indicated a greater corrosion resistance of weld metal than base metal. This is attributed to the precipitates present in the 
alloy promote matrix dissolution through selective dissolution of aluminium from the particle. These precipitate deposits 
are highly cathodic compared to the metallic matrix, which initiates pitting at the surrounding matrix and also enhances pit 
growth. During FSW process only coarser precipitates could nucleate and grow but not finer ones. This aids in formation 
of passive film, which remained more intact on surface of the sample. It is also found that in AA6082-6061 at 50mm/min, 
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the corrosion resistance is very poor. The poor pitting corrosion resistance of weld joint is due to difference in pitting 
potentials across the weld region or stir nugget because of inhomogeneity of microstructures in those regions. With 
AA6082 on the advancing side, the corrosion rate is higher with respect to increasing welding speed of the tool while 
corrosion rate decreased in case of AA6061 on advancing side (Tab. 5). Such dependence of the corrosion behaviour on 
the material position was observed. All FSW samples show passivation after longer time of exposure to corrosion media. 
AA6082-61 at 62mm/min has highest active potential (-1.16V). The active Ecorr increased with increasing the weld speed 
in case advancing and retreating side of 6082T6-6061T6. 

 

 
 

Figure 10: SEM images of tensile fracture surface of 6061-6082 at 62mm/min. 
 

Material of FSW Joint Icorr  (µA/cm2) Ecorr (mV) Corrosion Rate (mpy) 

6082T6-6061T6 55.00 -938 25.14 
6082T6-6061T6 3.33 -1160 1.520 

6061T6-6082T6 836nA -732 382 e-3 

6061T6-6082T6 1.590 -920 726.60 e-3 
AA6082-T6 4.270 -1380 1.95 
AA6061-T6 1.820 -1160 832.1 e-3 

 

Table 5: Result analysis of corrosion test. 
 

 
 

Figure 11: Polarization curves of base metals AA6082 and AA6061 
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Figure 12: Polarization curves of AA6082-AA6061 at 50-62 mm/min. 
 

 
 

Figure 13: Polarization curves of AA6061-AA6082 at 50-62 mm/min 
 
 
CONCLUSIONS 
 

he mechanical and metallurgical behaviour of dissimilar FSW AA6082–AA6061 was studied in this paper. The 
joints were produced with different alloy positioned on the advancing side of the tool. The joints were realized 
with a rotation speed of 1600 rpm and by changing the welding speed from 50 to 62mm/min. The downward 

force was observed to be constant as the welding speed for all the produced joints increases. The tensile strength of the 
dissimilar joint is lower than that of the parent metal. With the 6082 alloy positioned on the advancing side of the tool, the 
dissimilar joints exhibited good mechanical properties with respect to AA6061. Microstructural changes induced by the 
friction stir welding process were clearly identified in this study. Friction stir welding of dissimilar alloys AA6082T6-
6060T6 resulted in a dynamically recrystalized zone, TMAZ and HAZ. A softened region has clearly occurred in the 
friction stir welded joints, due to dissolution of strengthening precipitates.With AA6082 on the advancing side; the 
corrosion rate is higher with respect to increasing welding speed of the tool while corrosion rate decreased in case of 
AA6061 on advancing side. 
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ABSTRACT. The scope of the present work is to point out a consistent simulation procedure for the quasi-static 
fracture processes, starting from the micro-structural characteristics of the material. To this aim, a local nine-
parameters Gurson-Tvergaard-Needleman (GTN) damage law has been used. The damage parameters depend 
on the micro-structural characteristics and must be calculated, measured or opportunely tuned. This can be 
done, as proposed by the author, by using an opportunely tuned GTN model for the representative volume 
element simulations, in order to enrich the original damage model by considering also the defect size 
distribution. Once determined all the material parameters, an MT fracture test has been simulated by a FE code, 
to calculate the R-curve in an aeronautical Al-based alloy. The simulation procedure produced results in a very 
good agreement with the experimental data. 
 
KEYWORDS. GTN model; Ductile fracture; Cell calibration; R-curve. 
 
 
 
INTRODUCTION 
 

luminium alloys are widely used in aircraft structures, transportation industries and civil engineering due to their 
relative lightness and versatility. In particular, the fuselage skin, which thickness ranges from 1 to 3 mm, is often 
made of aluminium alloys capable of fully ductile behaviour. Thus, in order to better take advantage from the 

material metallurgical characteristics, the damage tolerance design concept is often used in the aircraft structures sizing. 
Following this approach, the presence of macroscopic cracks during the ordinary service life can be tolerated, as long as 
they are under control. For this reason, in this field the study of both the static and the dynamic response of cracked 
panels in ductile regime, in terms of residual strength it assumes a relevance that can hardly be overestimated [1]. The so-
called R-curve, that represents the critical stress intensity factor versus the crack length for a given structure, is a widely 
used tool to design by following the above criteria. Unfortunately the R-curve behaviour depends both from material and 
geometrical properties and then it changes as the test set-up changes [2, 3]. A reliable calculation model of the R-curve is, 
for this reasons, very important for the design purposes, in order to drastically decrease the amount of the very expensive 
physical tests.  
From a micro-mechanical point of view, ductile failure is typically characterized by three coupled stages: nucleation, 
growth and coalescence of voids, which are induced in the metal alloy matrix by the presence of a variety of microscopic 
defects. In order to consider the effects of these voids evolution on the stress-carrying capability of a mechanical 
continuum during simulations, damage mechanics models are often used. Many models for ductile fracture growth have 
been proposed in the past [4 - 11] and, for their relative simplicity and efficiency the Gurson-Tvergaard-Needleman 
(GTN) model and many of its variants are proposed by several authors and also included in some public FE codes, like 
WARP3D [12]. These kinds of models for ductile fracture include the micro-mechanical effects of void nucleation, 
growth, and coalescence of micro-voids in the constitutive equation used to describe the mechanical continuum. The 
coalescence mechanism, in particular, induces a strain softening at the large-scale material response. Therefore, the 
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material becomes susceptible of bifurcations, instabilities and localized deformation modes. This is because the governing 
equations become hyperbolic in some unknown area of the continuum and make ill-posed the boundary value problem. 
As a consequence, numerical solutions chronically suffer from mesh dependency [13 - 15]. 
A popular and well proven in literature way to avoid this problem is the use some nonlocal formulations of the damaged 
material model. This is done by replacing the local variables denoting stress and strain fields, as well as the damage 
variables and the other internal ones, with nonlocal variables, which are space-weighted averages of the local ones. The 
averaging volume is related to a characteristic length lc depending from the failure evolution at the micro-structural scale. 
The nonlocal formulations are capable to regularize ill-posed problems associated with damage, but require a very large 
increasing of the computational amount with respect to the local damage formulations [16 - 19]. From the computational 
point of view, the regularization is strictly related to the characteristic length; in fact, with lc a constraint to the material law 
is introduced in addition to the large scale material behavior [20].  
Also the local models can be regularized, and the easiest way to do this in a FE analysis is introducing the characteristic 
length not at the material model level, but more roughly at the element level. In other words, the element dimension will 
be strictly related to the characteristic length lc. In many works the latter computational strategy is adopted [21 - 24]. They 
typically present many free parameters that should be calibrated and fixed in a physically consistent way in order to make 
the calculation procedure effective.  
In the present work, a complete procedure to calculate the R-curve starting from a local form of the GTN model is 
presented and a numerical application on a widely used aeronautical alloy, 2024A-T351, is reported, using material and test 
data provided by industrial research offices. Differently from the purely phenomenological approach that is usually 
employed to calculate all the model parameters, a procedure to consistently calculate some of these parameters on the 
basis of objective micro-structural data has been performed. In order to enrich the original damage model also the defect 
size distribution has been considered. With such methodology, the arbitrariness of the parameters tuning is strongly 
reduced, and a double result is attained: the number of the FE run needed to simulate the R-curve behaviour drastically 
decreases, and the transferability of the whole methodology to different geometries and boundary conditions is improved. 
Once determined all the material parameters, to calculate the R-curve an MT fracture test has been simulated by the free 
FE code WARP3D. 
 
 
THE GTN MODEL FOR DUCTILE FRACTURE 
 

n a homogeneous ductile metal model, the total strain amount usually leaves unchanged the volume, because the 
plastic part of the strain is dominant with respect to the elastic one. On the other hand, in a material model 
containing voids which matrix phase is ductile, the volume can globally change, due to the local plastic flow arising 

around the voids boundary and, consequently, the void volume change. Then, the material model response to an imposed 
global strain will be a stress-strain curve presenting a softening curve, nevertheless the matrix material model have 
hardening behaviour. In such model, the voids can grow until the global load carry capability becomes negligible. 
The Gurson-Tvergaard (GT) model is able to explain the local strength decreasing during the fracture process of ductile 
metals in the intermediate phase between the nucleation and the coalescence of voids. Standing this characteristic, in the void 
growth model the number of voids is kept constant. Nucleation and coalescence are taken into account before the 
homogenization of the material model, applying some opportune corrections, originally proposed by Needleman et al., 
directly to the stress-strain cell response. Updated in this way the GT model, it is usually named GTN model. 
 
Gurson-Tvergaard model 
The homogenization technique is based on the stress-strain characterization of a Representative Volume Element (RVE), 
that can be roughly defined as the minimum material volume containing all the micro-structural information of a 
heterogeneous material, related to the specific problem under investigation (see, e.g., [25 - 27]). In the Gurson-Tvergaard 
void growth model, the RVE of the material is considered as a cubic volume with a single void, yet existing in the virgin 
material. The initial void volume fraction f0 should be chosen as the ‘equivalent’ volume fraction corresponding to the 
physical distribution of voids inside the RVE (Fig.1). 
The resulting homogenized material model was defined by modifying the analytical solution of the single void cell (Fig. 1) 
performed by Gurson and limited to a rigid-plastic material model of the matrix. The corrections take into account for the 
hardening of the matrix material and for the presence of void cell array instead of a single void cell. They are represented 
by the coefficients q1, q2, q3 in the critical surface definition, originally introduced by Tvergaard. 
 

I 
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Figure 1: Physical vs. equivalent voids distribution (plane representation). 
 
The homogenized constitutive law is defined by (tensors are indicated with bold characters): 
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Where: 
 

 Eq. (1) defines the plastic surface; 
 Eq. (2) is the plastic flow rule; 
 Eq. (3) is the void growth rate definition; 
 Eq. (4) imposes the equivalence between micro and macro-mechanical plastic work; 
 Eq. (5) is the global stress-strain relationship; 
 Eq. (6) is the plastic hardening power law for the matrix material. 
 

Further, the symbols indicate: 
 

  : stress tensor; 

p  : total and plastic strain tensors; 
C  : constitutive elastic law; 
eq

  : Von Mises equivalent global stress; 
 m

  : global mean stress; 

        : current matrix flow stress (internal variable of the model); 
       : current matrix equivalent strain (internal variable); 

f     : voids volume fraction (internal variable); 

 N      : hardening coefficient; 
00

  : yield equivalent stress and strain; 
q1, q2, q3  : Tvergaard correction coefficients. 
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Voids nucleation model 
The nucleation of the first void in an array of cells is implicit in the above model. With the increasing load, further voids 
can nucleate in the RVE, and this fact is indirectly taken into account in the homogenized material law by increasing the 
void growth rate defined in Eq. (3).  
In the present study the following relation is used: 
 

  nucdf A d                (7) 
 

where: 

 
2

1

22
N N

NN

f
A exp

SS

 


  
    
   

         (8) 

 

The corrected void growth rate becomes: 
 

    1 :pdf f d A d   ε I              (9) 
 

The expressions (7-9) relate the voids growth rate due to the nucleation process to the internal equivalent strain rate d . 
This acceleration is driven by the parameter A and it is limited to an internal strain condition in which   is quite close to 
a certain value N, representing the matrix strain value where the nucleation takes place. 
Three new parameters are so introduced in the constitutive law (1-6): 
 

fN : magnitude of the volume fraction rate increasing; 
N : main value of the internal strain for which the nucleation takes place 
SN : standard deviation of the Gaussian distribution. 

 

The void nucleation law completes the analytical description of the GTN model. 
 
Cell dimension 
It is well known that the undefined equilibrium problem in a material domain which constitutive law has softening 
branches loses ellipticity near the critical point and then it is hill-posed [27].  
If the finite element method is used to search a solution, disregarding the above problem, the resulting discrete equation 
can be solved, but the solution is chronically mesh dependent and the convergence can’t be reached. This occurs because 
near the softening condition the strain field would become discontinuous and, correspondently, in the discrete problem 
the strain tends to concentrate in a small zone, which size depends on the elements size. Smaller the element size, smaller 
the zone affected by the strain concentration. This behaviour is commonly named strain localization.  
If the softening law derives from a physical model of the material, the incongruence can be explained noting that, at the 
micro-structural scale, the material domain can’t be longer be considered homogeneous, so the softening at the large scale 
material law can be attributed to the micro-structural geometric changes.  
Apparently, the consequence of this fact is that we can’t use local homogenization techniques if the global material law 
presents a softening behaviour. In practice, using a local FE model, we can avoid the mesh dependence by keeping fix the 
element dimensions in the fracture zone, regardless with the macroscopic geometry of the domain. In particular, the 
dimension D0 to be mandatory controlled is the cell length in the direction perpendicular to the crack plane. The correct 
value of the element dimension depends on the scale of the local fracture process related to the particular material under 
consideration. In this way, the element dimension becomes a further parameter of the material constitutive law. In other 
words, we couldn’t use a local homogenized law because the analytical equilibrium problem is hill-posed, but the error 
that cannot be eliminated in the FE solution of this problem can be driven in order to reach a numerically correct result. 
 
Voids coalescence 
In the constitutive law (1-6) the internal strain state is represented by a unique variable  . This simplification can be 
accepted only in the early phases of the void growth, in which the internal strain (and stress) distribution doesn’t vary too 
much. In the following load phase the matrix material model becomes unrealistic. In fact, in this phase the fracture 
advances between two consecutive voids (coalescence) and then the RVE model with the single equivalent void itself 
becomes unrealistic. 
The voids coalescence, and the consequent crack advancing, is modelled in the FE code by eliminating the corresponding 
element (named killed element) when a critical volume fraction value fc is reached. Many studies have demonstrated that 
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the critical value should be much less than 1, which is the value rigorously provided by the theory. For many ductile 
materials the critical volume fraction can be set-up between 0.15  0.25, and a phenomenological correlation furnishes the 
following empirical law [21, 22]: 
 

fc = 0.15 + 2f0           (10) 
 

Along the crack plane, the element traction forces are still present in this condition (f  = fc) and they are gradually 
decreased until zero is reached, using a multiplicative coefficient , related to the cell dimension D0 and depending from a 
further parameter , to be set. 
 

 
0

1         0 1cD D

D
 




              (11) 

 

In Eq. (11) D and Dc indicates respectively the actual and the critical value of D0, averaged over the cell volume. 
 
 
CELL CALIBRATION 
 

he material model described above needs the calculation, the measurement or the phenomenological tuning of (at 
least) 13 parameters: 
 

 The internal plastic-hardening parameters N, 0, 0. 
 The Tvergaard correction coefficients q1, q2, q3. 
 The nucleation parameters fN , N , SN . 
 The cell height D0. 
 The initial and critical void volume fractions  f0 , fc . 
 The force release parameter . 
 
Critical void volume fraction and force release parameter 
These parameters are related to the coalescence phase. For the present calibration they have been chosen as mean values 
from the ones present in literature [21, 22]. 
 

fc  = 0.2;   = 0.1 
 

Notwithstanding the above position, the release forces parameter  contributes to form the energy released in the 
element extinction process, so it can’t be rigorously considered a merely calculation parameter. The coefficient defined 
in (11) depends on the component of the strain orthogonal to the crack plane. In fact, we can write: 
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where rel is the stress value present during the force release process (coalescence). Thus, the corresponding energy density 
w released in the coalescence phase can be evaluated, for small , c: 
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where c   is the stress corresponding to the critical strain c   (reached when  f = fc). 
Then, the parameter  is related to the energy released during the coalescence process.  
 
Cell height and initial void volume fraction 

Both the cell height D0 and the initial void volume fraction can be estimated considering as a starting point the defect 
size distribution. 
 

 

T 
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2024A-T351 All Three Directions

Equivalent 
Diameter 

(m) 

Volume 
Fraction (%) 

Standard 
Deviation 

Nearest 
Neighbour 

(m) 

Nearest 
Neighbour 
Standard 
Deviation 

(m) 

Minimum 
Separation 
Distance 

(m) 

Minimum 
Separation 
Distance 
Standard 
Deviation 

(m) 

Average 
Diam of 

particles in 
size category 

(m) 

All Sizes 0.76 0.33 10.61 8.01 8.55 8.09 1.75 

1:2 0.13 0.06 16.14 12.11 14.65 12.39 1.41

2:3 0.10 0.05 35.18 26.48 32.82 27.30 2.41 

3:4 0.07 0.04 62.38 46.78 59.61 48.71 3.41 

4:6 0.12 0.07 58.90 40.68 53.76 42.22 4.87 

6:8 0.11 0.08 93.54 64.45 86.12 66.44 6.88

8:10 0.09 0.09 130.27 96.68 122.14 101.91 8.86 

10+ 0.14 0.21 126.95 97.90 111.94 99.72 13.23 
 

Tabella 1: Defects size distribution. 
 

As shown above, the cell dimension, and in particular the cell height, is a fundamental parameter because, when the 
strain localization occurs, the cell height coincides with the localized strip of material. So, from this point, the most of 
the energy released is proportional to this parameter. On the other side, in the present model the energy released is also 
influenced by the coalescence parameters and by the shape of the stress-strain curve (that depends on the nucleation and 
Tvergaard parameters). Then, the correct cell height should be chosen taking into account the influence of all the above 
parameters in the fracture process. 
If we consider the cell as a representative volume element (as it is usually done) it should contain a sufficiently 
representative voids distribution. Of course, a greater RVE contains more micro-structural information, but it is less 
useful in the present model because the strain would localize in a strip with fixed height. In conclusion, the cell height 
can’t be precisely defined without a critical consideration of all the constitutive law parameters influence.  
As an approximated evaluation, we can consider the bigger defects above the last 20% of the total volume fraction as it 
were the driving defects of the localization process. In this way, with reference to the Tab.1, an RVE, which dimension is 
coincident with the cell height, will contain one defect with 10+ m diameter and the appropriate number of minor 
defects as deduced from the size distribution (Tab. 2). 

 

Category 
 

Volume 
fraction 

 

Average 
diameter (m)

 

Spherical 
average 

diameter (m)

Volume 
(m3) 

Density 
(defects/ 

mm3) 

Defects in the 
RVE 

1:2 0.0013 1.41 1.79 3.00 433000 904 

2:3 0.0010 2.41 3.07 15.1 66200 138 

3:4 0.0007 3.41 4.34 42.8 16300 34 

4:6 0.0012 4.87 6.20 125 8810 18 

6:8 0.0011 6.88 8.50 322 3410 7 

8:10 0.0009 8.86 11.3 752 1200 2 

10+ 0.0014 13.23 17.7 2920 479 1 
 

Tabella 2: Defects distribution in the RVE (from Tab. 1 data rearranging). 
 
The cell height and the initial void volume fraction can be finally estimated: 
 

D = (10+ category density) 1/3≈ 130 m;    f0 = 0.0014 
 

The D value is in good agreement with the literature values that range between 80÷200 m. 
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This procedure can appear quite arbitrary. In fact, if the categories were chosen in a different way (for instance the last 
category could be 8+ or 12+), the resulting D and f0 parameters were different. On the other side, this can be avoided if 
we consider for all the distribution, as stated above, the bigger defects above the last 20% of the total volume fraction; in 
this case, is arbitrary the 20% value. 
As discussed above, a certain degree of arbitrariness is un-eliminable because the cell height (and consequently the initial 
volume fraction) has the double role of dimension of the RVE and dimension of the strain localization zone. Then, once 
established the cell height on the basis of a reasonable RVE choice, the effect of the strain localization should be taken 
into account by tuning both the nucleation parameters (that can be considered responsible for the minor defects growth) 
and the coalescence parameters fc , . 
As an example, in the pictures below (Fig. 2) is reported the equivalent strain distribution inside two different two-
dimensional RVEs with the same initial volume fraction (see Fig.1 for the unstrained configurations). The first, is the 
simplified Gurson RVE with a single void; the second, has a void distribution compatible with the Tab. 2 distribution.  
 

               
 

Figure 2: Equivalent strain distribution inside two RVE. 
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Figure 3: Global cell response. 
 
It can be deduced that the localization zone dimension is larger in the first that in the second RVE. This fact influences 
the global cell response (Fig. 3). A more general discussion on this topic can is presented in [28]. Supposing that the 
second RVE represents a sufficiently accurate evaluation of the material behaviour, the pre-defined cell height seems too 
large in relation to the ‘true’ localization zone, as it results comparing the different entity of energy involved in the load 
process. Once established a compromise value D = 100 m < 130 m, the residual difference should be taken into 
account by tuning, as written above, the nucleation and the coalescence parameters. 
 
Tvergaard correction coefficients 
The correction coefficients q1, q2, q3 can be calculated from a single void RVE model. 
The global cell behaviour has been calculated for two different load conditions:  

http://dx.medra.org/10.3221/IGF-ESIS.24.17&auth=true
http://www.gruppofrattura.it


 

G. Cricrì, Frattura ed Integrità Strutturale, 24 (2013) 161-174; DOI: 10.3221/IGF-ESIS.24.17                                                                              
 

168 
 

1) Imposed global strain x > 0 and free surface condition for y and z direction. 
2) Imposed global strain x > 0 and y = z = - 0.2x . 

 

In the following pictures 4-5 are presented the cell mesh and the resulting strain distribution in the x direction for the 
two considered load cases.  
 

 
Figure 4: FE model of the single void cell. 

 

       
 

Figure 5: Strain (x) distribution for the two load cases. 
 
It can be noted that in the first case the x-direction strain is about uniform, but in the second there is a consistent strain 
concentration on the void boundary. This agrees with the constitutive law (1-6), that attributes the void volume fraction 
growth to the mean stress (Eq. 3) that in the first case is much lower than in the second one. 
The global RVE responses have to be compared with the eq. (1-6) stress-strain curves resulting from an equivalent load 
process. This comparison allows to determine the Tvergaard correction coefficients.  In the present work, the analytically 
derived  relation is adopted [23], that: 
 

 2
3 1q q   

 

In the subsequent refinement of the model calibration the parameter q3 could be left free.  
The two remaining free parameters q1, q2 are determined by imposing on the homogenized law the condition that the 
characteristic values: 
 

 
0

;   
c

max cw d


      

 

are equal to that resulting from the FEM calculation. 
The first load case (uniaxial strain) is quite insensitive to the parameter variation, due to the very slow void growth rate 
present in this condition, so the calibration has been done with reference to the second load case. Finally, the resulting 
values are: 
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q1 = 1.25;   q2  = 0.98;   q3  = 1.56 
 

In Fig. 6, the comparison between the FE model of the cell and the homogenized law (1-6) stress-strain curve is reported 
for the two load cases. 
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Figure 6: Global cell response compared with eq. (1-6) for the two load cases. 
 
Nucleation parameters 
In the present work, the nucleation parameters have been considered as correction parameters, not directly related to the 
microstructure. Then, the parameters fN, N , SN  have been used to fit the experimental-numerical results in the residual 
strength curve, and their values are reported in the following section. 
In Fig. 7 the coalescence law (11) has been included into the constitutive law, with the imposed values fc  = 0.2 for the 
starting point, and  = 0.1 for the curve slope, as established before. It is shown that the energy related to the 
coalescence process is a non negligible part of the total cell energy. 
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Figure 7: Global cell response compared with eq. (1) and the coalescence law. 
 
 
R-CURVE DETERMINATION 
 

he R-curve calculation procedure has been tested on an M(T) specimen model, which experimental results have 
been published in [2]. 
The M(T) specimen used for the residual strength results is made by a 1.28 mm thick 2024 sheet material. The T 
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panel width is H = 500 mm and the initial half crack length is a0 = 49.78 mm. Testing and data evaluation were done 
according to ASTM specification E561-86 for R-curve determination. The residual strength tests were done under 
displacement control. 
 
Mesh generation 
The FEM mesh has been generated within the ANSYS code pre-processor module. All the elements are eight nodes 
brick, in order to be allowable for the subsequent calculations with the WARP3D [12] solver. The specimen has been 
modelled taking into account the three symmetry conditions. Along the crack plane, all the elements are cubic with 
length D0 = 106.667 m (see the calibration section). Along the thickness t, six elements have been generated, so that t/2 
= 0.64 mm = 6D0. In Fig. 8 some particulars of the mesh generation are reported. 
It should be noted that, as shown in the last picture, there the row of elements before the initial crack front is not 
present. Further, the elements that will be killed during the crack advance simulation are indicated with a different colour, 
that indicates two different materials. In fact, for computational reasons, the killable elements have to be separated from 
the non-killable ones; otherwise, the solver can try to kill the above elements in contrast with the crack plane definition. 
This contrast will produce a program error (the limitation is related only to the force-release kill procedure). The 
elements immediately before the initial crack front have been deleted in order to avoid an undesired ‘collaboration’ to the 
initial crack strength. 
The as generated mesh, and the boundary conditions have been ‘translated’ into the corresponding WARP3D commands 
by using a Fortran routine. 
 
 

              
 

       
 

Figure 8: Mesh generation. 
 

Results: Load vs. crack length curve 
From the experimental test data, the following material parameters have been chosen for the numerical analysis: 
 

 E = 71100 MPa 
 y = 366 MPa 

u = 482 MPa 
 f = 0.173 
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So, the internal stress parameters are: 
 

0 = y = 366 MPa 
o = y / E = 0.00515 
f,log = log(1 + f) = 0.1596 
u,true = u (1 + f ) = 565 MPa 
N = log(f,log /o) / log(u,true /0) = 8.0 

 

The other constitutive law parameters values, calculated in the above section, are: 
 

q1 = 1.25 
q2 = 0.98 
q3 = 1.56 
f0 = 0.0014 
D = 0.107 mm 
Fc = 0.2 
 = 0.1 

  

After the solution has been calculated, by using a Fortran routine, the WARP3D output file can be read and interpreted. 
For every step, the total reaction value Ry in the traction direction and the total number of killed elements Nk are stored. 
Then, with simple data manipulations, the gross stress S and the half crack length a are pointed out: 
 

S = Ry / (t·H/4) 
 

a = Nk / (t/2)·D2 
 

The resulting curve S(a) has to be compared with the experimental curve in order to perform the tuning of the 
nucleation parameters. 
 
Nucleation parameters tuning 
From the afore cited experimental test data, the following experimental stress vs. crack length curve results (Fig. 9). 
By varying the nucleation parameters N, SN, fN, different curves have been calculated . The parameter fN  gets down the 
curve when it is increased; SN has the opposite effect, with a little influence on the shape of the curve; the increasing of 
N can slightly move the curve maximum value versus the increasing a. The best nucleation parameter values are: 
 

N = 0.09 
 

SN = 0.09 
 

fN  = 0.2 
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Figure 9: Experimental stress vs. crack length curve. 
 

Final results and R-curve 
The ASTM specification E561-86 for R-curve determination imposes that the curves have to be expressed in terms of 
equivalent stress intensity factor and equivalent crack length, in order to take into account for the plastic deformation 
around the crack tip. For the M(T) central crack specimen, the equivalent SIF is defined by: 
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The equivalent crack length has two alternative definitions: the one, based on the Crack Opening Displacement in the 
traction direction of the centre of the crack; the other, which has been adopted in the present work, based on the plastic 
radius evaluation. The plasticity contribution to the equivalent crack length is done by: 
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Then, the equivalent crack length is defined by: 
 

 0;  Δeq p eq eqa a r a a a              (14) 
 

The plastic radius definition (13) contains the equivalent SIF and, vice-versa, the expression (12) contains the equivalent 
crack length. It is then necessary to calculate iteratively the two expressions (12), (13-14) up to the convergence is 
reached. The current plastic radius value is then done, in an iterative formulation by: 
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The convergence is reached when the (i+1)-th value of the plastic radius differs from the i-th value for a small enough 
quantity. 
By using the S(a) values calculated before, and after the above descript transformation (S, a)  (Keq, aeq), we can compare 
the calculated and experimental R-curves, as reported in Fig. 10. As a result, the calculated R-curve is in very good 
agreement with the experimental test. 
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Figure 10: Comparison between calculated and experimental R-curve. 
 
In the following pictures, some results from the FE solution are reported. The WARP3D solution data stored during the 
calculation has been ‘translated’ in ANSYS commands with a Fortran routine, in order to use its postprocessor module. 
In Fig. 11 the calculated stress distribution in the traction direction (y) for the half-crack length increasing a = 25 mm is 
reported for the whole model and near the crack front. It is possible to appreciate the thorough-the-thickness 
distribution (remember that symmetry conditions have been imposed). In the following Fig. 12, the crack front shape is 
pointed out. It results from the elements extinction procedure described above. 
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Figure 11: Calculated stress distribution in the traction direction (y) for a = 25 mm. 
 

 
 

Figure 12: Crack front shape resulting from elements extinction. 
 

In Fig. 13, the enhanced deformed configuration is reported, for a = 25 mm. In the first picture, the deformation 
around the crack tip is pointed out and it is possible to  appreciate the strain localization effect. In the last picture, the 
residual strain near the initial crack length is shown. Considering that the crack surface is stress free, the deformation is 
totally plastic. Further, the difference between the residual strain on the symmetry surface (the visible surface) and the 
external one is shown, were for the external surface (near the plane stress condition) the plastic strain is much higher. 
 

 
 

Figure 13: Deformed configuration near the crack tip and the initial crack length. 
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CONCLUSIONS 
 

 complete procedure for the R-curve calculation has been presented, tested on a MT test specimen simulation 
reproducing a widely used aeronautical alloy, 2024A-T351, which gives results in a very good agreement with the 
experimental tests. The algorithm was based on the local form of the Gurson – Tvergaard –Needleman damage 

model and, differently from the purely phenomenological approach that is usually employed to calculate all the model 
parameters, it uses a preliminary RVE definition, partially based on microstructural information on the material, to 
determine most of the continuum-scaled model. In order to enrich the original damage model also the defect size 
distribution has been considered. Only few parameters are tuned on the basis of an experimental test: they are the 
nucleation parameters fN, N, SN. They are related to the material behaviour, nor to the geometry of the test specimen. For 
this reason, they can reasonably be determined with a single test result, as is done in the present work, and the same values 
can be used for different geometries, as the design process requires. 
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