Numerical modelling of ductile damage mechanics coupled with an unconventional plasticity model
##plugins.themes.bootstrap3.article.main##
Abstract
Ductility in metals includes the material’s capability to tolerate plastic deformations before partial or total degradation of its mechanical properties. Modelling this parameter is important in structure and component design because it can be used to estimate material failure under a generic multi-axial stress state. Previous work has attempted to provide accurate descriptions of the mechanical property degradation resulting from the formation, growth, and coalescence of microvoids in the medium. Experimentally, ductile damage is inherently linked with the accumulation of plastic strain; therefore, coupling damage and elastoplasticity is necessary for describing this phenomenon accurately. In this paper, we combine the approach proposed by Lemaitre with the features of an unconventional plasticity model, the extended subloading surface model, to predict material fatigue even for loading conditions below the yield stress.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.