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ABSTRACT. The strongest point about damage identification based on the 
dynamic measurements, is the ability to perform structural health evaluation 
globally. Researchers in the last few years payed more attention to damage 
indicators based on modal analysis using either frequencies, mode shapes, or 
Frequency Response Functions (FRFs). This paper presents a new application 
of damage identification in a cross-ply (0°/90°/0°) laminated composite plate 
based on Force Residual Method (FRM) damage indicator. Considering single 
and multiple damages with different damage levels. As well as investigating 
the SSSS and CCCC boundary conditions effect on the estimation accuracy. 
Moreover, a white Gaussian noise is introduced to test the challenges of the 
technique. The results show that the suggested FRM indicator provides 
accurate results under different boundary conditions, favouring the SSSS 
boundary condition than the CCCC for 3% noise.  
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INTRODUCTION  
 

omposite materials become a cornerstone of modern material and are being used in almost every engineering 
discipline, like civil, infrastructure, aerospace engineering to name a few, due to their outstanding strength compared 
to their weight. However, composite materials are not immune to damage, and when it happens, whether due to 

fatigue or accidents, it can reduce their rigidity significantly. Therefore, researchers in the last decade developed new methods 
for damage identification dedicated to composite materials. In such methods, vibration-based structural responses are 
commonly used. Doebling et al. [1] presented a review of these approaches. We mention in this paper some of the noticeable 
literature, such as the study made by Khatri et al [2], in which the authors considered experimental analysis for damage 
identification in a complex structure, with an inverse problem formulation based on Particle Swarm Optimization (PSO). 
Ghannadi et al. [3] presented an approach based on the Multiverse Optimizer (MVO). Where two objective functions were 
used, namely the modal assurance criterion (MAC) and the modified total modal assurance criterion (MTMAC). Wand et 
al. [4] Suggested a neural network technique for damage identification refinement in the case of a suspension bridge. And 
Providakis et al. [5] used impedance-type measurements and error statistics to present a new damage identification approach 
in composite structures. Vahedian et al. [6] considered the case of multi-storey timber buildings and presented an 
improvement on the damage assessment by SFRP. And Tiachacht et al. [7] investigated a new modified indicator based on 
Cornwell Indicator (CI). This indicator was tested in different structures and the results suggested better accuracy than the 
peer methods. The frequency change-based approach was used in the classification of vibration-based damage detection 
techniques [8, 9], a technique based on curvature mode shape [10], as well as another technique based on Modal Strain 
Energy [11]. Computational cost is often an issue in such methods. A quick damage identification method in the laminated 
composite plate using CI and Machine learning based Artificial Neural Network (ANN) was presented in Ref. [12]. The 
authors used Isogeometric Analysis (IGA) combined with damage indicator for damage localization and ANN for damage 
quantification. Different indicators were combined with laminated composite beams and plates in Refs. [13, 14].  
Nobahari et al. [15] suggested an approach with the name: “Flexibility Strain Energy-Based Index (FSEBI)”.  For multiple 
damages identification, in both simple and complex cases. The efficiency of this method for multiple damage localization 
was shown in the results.  Flexibility matrix for damage identification was investigated by [16]. This technique is efficient 
for damaged detection. However, the provided technique is experimentally validated. Ghannadi et al. [17] considered a 
variety of structures to investigate their new approach based on the Grey Wolf Optimization (GWO) algorithm. Using an 
objective function that combines the frequencies and mode shapes. The validation of the suggested methods is carried out 
in two experimental studies, namely a cantilever beam and a truss tower. Different optimization techniques were investigated 
for damage identification problems [2, 12, 18-20], such as steel and composite plates, steel and composite beams, and 
complex structures.  
In this paper, a laminated composite plate with three layers (0°/90°/0°) is considered for damage identification, using the 
residual force method with FEM. The structural response is studied under two kinds of boundary conditions, namely, fully 
simply supported (SSSS) and fully clamped plates (CCCC) to test the accuracy of FRM. Considering the measurement 
uncertainty up to 3% level, simulated by white Gaussian noise.  
 
 
METHODOLOGY 
 
Finite Element Analysis of laminate plate 

his study is based on the First-order shear deformation theory (FSDT) [21]. In such a method, after material 
deformation, the effects of transverse shear strains cause the transverse to not remain perpendicular to the mid 
surface. w  is not function of the thickness coordinate z  because of the inextensibility of transverse normal. 

Therefore, the displacement field of the FSDT function of time t  is written in the following form:  
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where  0 0 0, ,u v w  is the displacement vector of a point on the plane  0z , x  is the rotations of a transverse normal 

around the x-axes and  y  is the equivalent for the y-axes. 

 

 
 

Figure 1: Laminated plate - organization of layers in the thickness direction. 
 

The strain energy is: 
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The components of the stiffness matrix include the membrane-bending coupling part, are written as follows: 
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where e
mmK is the stiffness matrix of the membrane part, and e

mfK , e
fmK  are the membrane-bending coupling components, 

e
ffK  represent the bending component and e

ccK represent the shear component. These matrices are detailed as follows: 
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Here cn  represents the number of layers across the z-axes. 

z
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There exist three B matrices (membrane, the bending and the shear components), corresponding to the strain-displacements. 
They are described in detail as follows: 
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
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In this paper, we consider the dynamic version of the principle of virtual displacements. The equations of motion for the 
free vibration of symmetric cross-ply laminated plates can be expressed as: 
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Here, 𝐼଴ and 𝐼ଶ are the tensor components for the mass inertia, and they are defined as: 
 

 
3

0 2;
12

h
I h I                                                                                    (7) 

 
where   and h  are, respectively, the density and the total thickness of the composite plate. 𝐴௜௝ and 𝐷௜௝ are the extensional 
and bending stiffnesses, and they are expressed as in the following equations:  
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where  k
ijQ  is the stress-reduced stiffness matrix for the transformed material plane in each layer k.  

 In Eqn. (8), the matrix can be obtained as follows: 
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mQ PQ P                                                                                                 (9) 

 
where P is the transformation matrix given by: 
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where    cos ;    sin  and    2 sin 2 and mQ  is the stress-reduced stiffness for the material plane  
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, where 1E  is Young’s modulus for a layer parallel to fibres. And 2E  is the 

equivalent Young’s modulus for the layers that are perpendicular to fibres. On the other hand, 12  and 21  are Poisson’s 

ratios.  23G  is the shear modulus for planes 2−3, 13G  is the equivalent shear modulus for planes 1−3, and 12G represent the 
shear modulus for planes 1−2. 
 

The variables w , x  and  y can be expressed in the harmonic forms as follows: 
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and the equations of motion (6) become: 
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In which   is natural frequency. 
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Residual forces 
In this section, we explore structural damage identification based on the residual forces, details about residual forces can be 
found in Ref. [22]. In such approaches, the structure is divided into small elements via the finite element method, and the 
damage index of each element is expressed as the change of the rigidity i.e.: 
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K  are the elementary matrices of the undamaged and damaged structures, respectively. In the above 

equation, Eqn. (14),   e

i
K is the difference in stiffness, and   is a value between 0 and 1, which  indicates a loss of rigidity 

in each element. In other words, for undamaged elements,   is equal to 0, and to 1 in fully damaged elements. In this study, 
we assume that the damage does not affect the mass matrix of a damaged structure, therefore the rigidity matrix of the 
damaged element is expressed as follows: 
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and the modal residual force vector is expressed by this equation: 
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As consequence, Eqn. (16) can be represented in a matrix form by the following expression: 
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Here,  ij
F is the force vector in the actual node thi  on the thj  element, written in the global coordinates. 

The vector of residual force modal is expressed in this manner: 
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and Eqn. (17) is rewritten in this manner: 
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Here, n is the number of modes. And m is the number of elements. And the damage indicators are computed through the 
system of equations Eqn. (20)  
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NUMERICAL EXAMPLES 
 

A square laminated (0°/90°/0°) plates 

o investigate the performance of the suggested method, we consider an example of square cross-ply laminated plates. 
In this study, we assume that all layers of the laminate have the same thickness and density, and made of linearly 
elastic composite material, with the following properties for each layer:    1 2 12 13 2/  40,  0.6E E G G E ; 

23 2  0.5G E ;  12   0.25 . Subscripts 1 denote the direction parallel to fibre orientation in a layer and 2 represent the 
perpendicular direction to the fibre.  
Considering that the measurement is performed clockwise, the ply angle is positive of each layer from the global x-axis to 
the fibre direction, and negative if measured anti-clockwise. we consider a mesh of 10 ×10 (100 elements) as shown in Fig. 
2. And to obtain the natural frequencies and mode shapes, the eigenproblem is solved using MATLAB. We compare our 
results to those published by Ferreira and Fasshauer [23] and [24], considering the same shear correction factors, as well as 
the nondimensionalized natural frequencies.  
 

 
 

Figure 2: (a) A cross-ply (0°/90°/0°) square composite plate and (b) Discretized square isotropic plate with two damage scenarios. 
 

The Shear correction factor is considered as  2 /12sK , and the dimensionless natural frequency is given by: 

     2 2
0b h D where    3

0 2 12 2112 1D E h . We also consider in this study, two damage scenarios, simulated 

by reducing the global stiffness of individual element in the following manner: 
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K K                                                                                                                    (22) 

 

Here,  represents the damage ratio. dK  is the global stiffness matrix representing the damaged structures. Finally, eK is 
the stiffness matrix of the eth element. 
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Considering three-ply (0°/90°/0°) clamped CCCC square, with laminated plates of thickness to span ratios  0.2t b  and 

 1a b , Tab. 2 shows the convergence results of dimensionless natural frequencies.  
To validate the proposed damage identification approach, we consider four damage scenarios. The first scenario has one 
damage, and two damages in the second scenario and two other scenarios has three and four damages, respectively. Details 
of each damage case are shown in Tab. 1. And the corresponding natural frequencies are shown in Tab. 2. Fig. 3 shows the 
first four mode shapes of the cross-ply (0°/90°/0°) square composite plate under SSSS boundary conditions.  
 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Element No 16 28 
29 

8 
16 
24 

32 
40 
63 
64 

Severity % 15 5 
5 

15 
5 
10 

10 
5 
5 
10 

 

Table 1: Damage scenarios. 
 

Mode 1 2 3 4 5 

Intact 
[23] 10 × 10 3.5479  5.8947  7.3163  8.6545  9.7538  

[24] 3.5939  5.7691  7.3972  8.6876  9.1451  

Present 10 × 10 3.5479 5.8947 7.3163 8.6545 9.7538 

Damaged 

Scenario 1 3.5425 5.8934 7.3093 8.6516 9.7514 

Scenario 2 3.5470 5.8933 7.3162 8.6541 9.7518 

Scenario 3 3.5410 5.8885 7.3048 8.6377 9.7461 

Scenario 4 3.5464 5.8905 7.3102 8.6455 9.7392 
 

Table 2: Naturel frequencies of undamaged and damaged laminate plate structure SSSS. 
 

 
 

Figure 3: The first four mode shapes of the cross-ply (0°/90°/0°) fully simply supported square composite plate SSSS. 
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(a) Noise-free.                                                     (b) Noise 3%. 

Figure 4: Damage index for all elements of the cross-ply (0°/90°/0°) square composite plate SSSS – Scenario 1. 
 

 
(a) Noise-free.                                                     (b) Noise 3%. 

Figure 5: Damage index for all elements of the cross-ply (0°/90°/0°) square composite plate SSSS – Scenario 2. 
 

 
(a) Noise-free.                                                     (b) Noise 3%. 

Figure 6: Damage index for all elements of the cross-ply (0°/90°/0°) square composite plate SSSS – Scenario 3. 
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                                          (a) Noise-free.                                                                                   (b) Noise 3%. 
 

Figure 7: Damage index for all elements of the cross-ply (0°/90°/0°) square composite plate SSSS – Scenario 4. 
 

The presented results showed that FRM predicts the location of damage correctly with higher accuracy in a laminated 
composite plate in the case of SSSS boundary conditions. On the other hand, the indicator can support the noise of up to 
3%. We note that prediction error under 3% noise correlates with the number of damages. The prediction error in the case 
of single and double damaged plates is very small, which is noticed when the number of damages is higher than three.   
Fig. 8 shows the first four mode shapes, in the case of cross-ply (0°/90°/0°) square composite plate under CCCC boundary 
conditions. And Figs. 9-12 plot the results of each scenario in the presence and absence of measurement noise. The natural 
frequencies of each damage scenario are presented in Tab. 3. 
 
 

Mode 1 2 3 4 5 

Intact 

[23] 10 × 10 4.4145  6.8373  7.6291  9.2078  10.3964  

[24] 4.4468  6.6419  7.6996  9.1852  9.7378  

Present 10 × 10 4.4145 6.8373 7.6291 9.2078 10.3964 

Damaged 

Scenario 1 4.4069 6.8359 7.6198 9.2046 10.3939 

Scenario 2 4.4132 6.8347 7.6285 9.2060 10.3941 

Scenario 3 4.4060 6.8299 7.6169 9.1899 10.3885 

Scenario 4 4.4109 6.8282 7.6238 9.1976 10.3775 
 

Table 3: Naturel frequencies of undamaged and damaged laminated plate structure CCCC. 
 

Under boundary condition CCCC, the indicator can support the noise of up to 3%. However, the prediction error under 
noise is different in each scenario. The prediction error in the case of single and double damaged plates is higher than that 
of the cases of SSSS.  
Fig. 13 summarizes the obtained damage identification results for the laminated composite plate with and without noise and 
the accuracy in each damage scenario. These results suggest that the scenario of plates under SSSS boundary condition 
correspond to the same accuracy in all cases where there is no noise.  However, it has an advantage over CCCC in the 
scenarios of 3% noise and three damages (Case 3). CCCC on the other hand presents an advantage in the small number of 
damages.  
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Figure 8: The first four mode shapes of the cross-ply (0°/90°/0°) fully clamped square composite plate CCCC. 
 

 
 

 
(a) Noise-free.                                                     (b) Noise 3%. 

Figure 9: Damage index for all elements of the cross-ply (0°/90°/0°) square composite plate CCCC – Scenario 1. 
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                                                  (a) Noise-free.                                                                (b) Noise 3%. 

Figure 10: Damage index for all elements of the cross-ply (0°/90°/0°) square composite plate CCCC – Scenario 2. 
 

 
                                                 (a) Noise-free.                                                                     (b) Noise 3%. 

Figure 11: Damage index for all elements of the cross-ply (0°/90°/0°) square composite plate (CCCC) – Scenario 3. 
 

 
                                                   (a) Noise-free.                                                                  (b) Noise 3%. 

Figure 12: Damage index for all elements of the cross-ply (0°/90°/0°) square composite plate (CCCC) – Scenario 4. 
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Figure 13: Comparison of obtained damage identification results for the laminated composite plat without noise and with noise. 
 
 
CONCLUSION  
 

n this study, we present an application for damage identification based on Force Residual Method (FRM) in the case 
of a cross-ply (0°/90°/0°) laminated composite plate. We consider the cases of single and multiple damages, and 
different levels of damages. To test the accuracy of FRM, different boundary conditions were applied to the composite 

plate. We found that the proposed approach is accurate for damage prediction, localization, and quantification in laminated 
composite plates. Different levels of white Gaussian noise are applied to the measured natural frequencies and used for 
damage prediction for SSSS and CCCC to test the effectiveness of FRM for laminated composite. The results showed that 
SSSS is more stable in cases of multiple damages than CCCC, supporting noise level over 3%.  
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