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ABSTRACT. The problem of constructing the multilevel physical model of 
inelastic deformation in steels allowing to take into consideration diffusionless 
solid-state phase (martensitic) transitions is considered. The model structure 
includes three scale levels with the closed system of equations offered for 
them. Explicit internal variables reflecting the evolution of the material 
structure (both the defect structure and the grain one) are introduced at the 
lower scale levels of the model. The distinctive feature of the developed model 
is consideration of the lower scale level in such a way that a homogeneous 
element of this level completely turns into a new phase at a high speed (relative 
to the kinematic quasi-static loading), that is close to the speed of sound in the 
crystal medium. Based on the principles of classical thermodynamics the phase 
transformation criterion is written. According to this criterion, the choice of a 
transformational system under the martensitic transition is made. The 
algorithm of the model is developed and its realization features are described 
in connection with the high-rate restructuring of the face-centered cubic lattice 
to the body-centered tetragonal one. The result of this restructuring is a severe 
change in the physic-mechanical properties of the material. 
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INTRODUCTION  
 

dvanced high-strength steels have a wide range of applications in industry and technology, which is constantly 
increasing due to the excellent combination of their plastic and durability properties [1–2]. Enhanced physics and 
mechanical properties of steels are achieved by the state of grain and defect structure formed as a result of previous 

thermo-mechanical processing, mechanisms of its formation and evolution [3]. Numerous experimental studies indicate that 
phase transformations may be the main reason for the set of physical and mechanical properties in steels, ensuring their 

A 

http://www.gruppofrattura.it/VA/49/2450.mp4


 

P. Trusov et alii, Frattura ed Integrità Strutturale, 49 (2019) 125-139; DOI: 10.3221/IGF-ESIS.49.14                                                                   
 

126 
 

wide usage [4–5]. All known phase transitions for solid state are observed in steels and their alloys, such as polymorphic 
transformations with a wide range of morphological and kinetic features, eutectoidal (pearlite) transformations, decay of 
solid interstitial and substitutional solutions, ordering with a change in the local and long-range order in austenite and 
martensite. The possibility of realization for certain phase transformations and kinetics of transformations depends on the 
steel composition and the parameters of thermo-mechanical impacts, such as temperature, heating or cooling conditions, 
holding time, mechanical loading parameters, etc. The important feature of such systems is that the diffusion mobility of 
metal atoms and carbon is sharply different. Therefore, the crystal lattice restructuring during transformations can occur 
together with the diffusion redistribution of carbon and alloying elements. Another feature of steels is that during phase 
transitions of supercooled austenite, the transformation of a face-centered cubic crystal lattice into a body-centered 
tetragonal lattice can occur simultaneously with the diffusion redistribution of carbon and alloying elements. The 
experimental study of this issue is quite resource-expensive. Therefore, in solid mechanics, the problem of constructing the 
models describing the state and evolution of the structure for a material taking into consideration solid-state phase 
transformations becomes actual. It is widely known, that the physic-mechanical properties of polycrystalline materials and 
the functional characteristics of finished products are determined by the current state of the structure at various scale levels 
[6–7]. The latter significantly changes in thermo-mechanical processing of metals. The correct description of the internal 
structure for a material provides a fundamental opportunity to optimize existing and develop new methods for obtaining 
materials and products made of them with increased strength and performance characteristics. As a result, in recent decades, 
models based on explicit considering the mechanisms and the carriers of inelastic deformation (crystal plasticity based 
multilevel models of inelastic deformation) are of great interest in solid mechanics [8]. As a rule, in such models, the correct 
description of the existing mechanisms for inelastic deformation requires the introduction of several (two or more) scale 
levels. The multilevel approach from the point of view of physical description of the occurring processes is rather universal 
and can be applied to designing structures made of new, not yet existing materials and creating technologies for their 
manufacturing. The theoretical basis of this approach to the study of inelastic deformation is the methods of mathematical 
modeling with the introduction of internal variables, supplemented with the model identification and verification 
procedures. Internal variables make it possible to explicitly include a description of the physical mechanisms, their carriers, 
and processes accompanying inelastic deformation at various scale levels of a material. Also, the internal variables of a model 
reflect structural interactions and restructuring the meso- and microstructure of a material. The scale levels involved into 
consideration are determined by the objectives of the study and the most important mechanisms of inelastic deformation. 
At the lower scale levels there is a principal possibility for correct accounting the physical mechanisms of inelastic 
deformation. Thermo-mechanical effects are transmitted from the macro level to the lower scales and cause changes in the 
internal structure. In turn, the latter determines the effective characteristics of the material at the macro level. In the 
framework of the multilevel approach to describe inelastic deformation of metals under thermo-mechanical processing a 
material point with a necessary set of homogeneous (averaged) characteristics is allocated at the macro-level. A set of 
homogeneous areas corresponds to this material point at one or several lower scale levels. The multilevel approach allows 
to describe the response of the material with the constitutive relations of a same type at various scale levels. In the framework 
of this work, Hooke's law in the rate relaxation form, written in terms of asymmetric measures of strain rates, is used. At 
the lower scale level, crystallite (a homogeneous part of a polycrystalline material) is considered. Each crystallite has a set of 
properties: anisotropic elastic modules, lattice orientation, a set of slip systems, transformation systems, the thermal 
conductivity coefficients. In the models of this type, an important aspect is the correct description of the internal variables 
evolution being responsible for the properties of both a crystallite and a polycrystal [6]. Constitutive and kinematic equations 
describing the irreversible deformation at the meso-level due to the slip of dislocations, phase transitions, the evolution 
equations for critical shear stresses (by different mechanisms), description of rotation for the crystallites, the influence of 
the temperature changing and the attached stresses on the evolution of the defect structure are included into consideration. 
The problem of taking into account the geometric nonlinearity at the upper scale level and the connection for the similar 
characteristics of the scale levels remains important [9]. 
 
 
MODELING THE PROCESSES OF INELASTIC DEFORMATION TAKING INTO CONSIDERATION PHASE 

TRANSFORMATIONS 
 

t present, in scientific literature there are various models of different types to describe the behavior of steels taking 
into consideration martensite transformations. The reviews of the works devoted to this problem can be found in 
the articles [10–11]. Two main approaches to constructing the models of polymorphic transformations can been 

distinguished. The first one is based on the models with explicit account of the phase boundaries taking into consideration 
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the conditions at the phase boundary of the deformable material and the kinetics of a new phase evolution. The second one 
is based on the models with introduction of additional state parameters or model variables characterizing certain features of 
the material structure “on average” (for example, the concentration of a new phase), and the formulation of relations for 
them. In the models of the first type, with the explicit introduction of interphase boundaries into consideration [see 12–13], 
there is an opportunity to describe phase transformations from the point of solid mechanics using the ideas of the classical 
phase transitions theory by J. Gibbs. Phase boundaries appear in solids as a result of phase transitions. They can be 
considered as surfaces where deformations have a discontinuity whereas a field of displacement is continuous. The 
microstructure of a material changing in the process of the phase transition generates its own transformation deformations 
and modification in the elastic modules. So that, at the phase boundary some components of the strain tensor can break, 
and it leads to limitations on the constitutive relations. Appearance of an equilibrium discontinuous deformation field in an 
elastic body requires some regions in the deformation space where the Hadamard's inequality, being a necessary condition 
for stability with respect to infinitely small deformations, is failed. To maintain an equilibrium at the phase boundary, the 
following conditions must be satisfied: continuity keeping, force continuity, and a thermodynamic condition being an 
analogous of the chemical potentials' equality in the Gibbs theory. The latter condition imposes restrictions on determining 
the shape of the phase boundary and the corresponding deformations at the boundary. Since, even if the defining relations 
allow the existence of two-phased states, not all deformations can be realized at the phase boundary. This leads to the 
concept of a phase transitions' zone, which boundary determines the limit surface of transformation in the space of 
deformations. 
For the second type models, the phase field method is often applied, which is used to describe both diffusion 
transformations and diffusionless (martensite) ones at the meso-level (the simulated area consists of several grains) in many 
cases [see, for example, 14]. This approach assumes the presence of a “blurred” (“diffusion”) boundary between the phases 
in contrast to the classical methods using the concept of “sharp boundary”, when the multiphase structure is described by 
the position of the boundary and the set of differential equations is solved together with the flow equations and the 
constitutive equations at the boundary for each of the areas. In the “diffusion boundary” approach, the form and mutual 
arrangement of the regions occupied by individual phases are described by a set of parameters determining their fraction φi. 
The value of the parameter can vary from 0 to 1; φi=0 corresponds to the area where there is no phase i, φi=1 corresponds 
to the single-phase region. Thus, the microstructure (with the exception of grain boundaries, defects, etc.) can be described 
by a set of single-phased regions separated by boundaries where more than one value φi  is different from zero. In the 
“diffusion boundary” approach, the change in the shape of the regions (and hence, the position of the boundary) over time 
is implicitly determined by the change in the fractions of phases. The time change of the phase fractions is described by the 
kinetic equation obtained in terms of thermodynamics of irreversible processes, i.e. the linear relationship between the rate 
of change for the phase fractions and the derivative of the thermodynamic potential for this parameter is used. Phase 
transformations occurring in isothermal conditions are most often investigated, and free energy is taken as a thermodynamic 
potential, but there are works studying non-isothermal processes where entropy is chosen as a thermodynamic potential 
[15]. 
In most studies devoted to description of thermo-mechanical processes, the so-called direct models of the first type are 
used [16] when a set of finite elements is matched to each grain and a model is used to describe the phase transitions for 
each of the elements. The usage of such models for modeling the real processes in three-dimensional formulation requires 
significant computational resources. Therefore, the statistic type models [17] are actual, where the set of homogeneous 
elements of the lower scale level constitutes a representative volume with homogeneous properties at a higher scale. Within 
this paper, a multilevel model of the hybrid type to describe the behavior of steels under thermo-mechanical loading, taking 
into consideration the phase transformations, is proposed by the authors. Within the framework of this model at the macro 
level, a direct type model is used. To determine the response of each material point at this scale level, a statistic model is 
applied, comprising the elements from a lower scale. The structure of this model includes internal variables being divided 
into two groups: explicit ones and implicit ones. Explicit internal variables are included into the constitutive relations at the 
considered scale level, and the implicit ones are the parameters of evolution equations. To connect the internal variables of 
two above mentioned groups, the closing equations are applied. When using the approach with explicit introduction of 
internal variables, the following hypothesis is accepted. The reaction of the material at any moment is determined by the 
current values of thermo-mechanical characteristics, internal variables and parameters of external influence. The considered 
hypothesis allows to give up rather complicated constitutive relations in the operator form. At the same time, the material 
memory about the prehistory of influences is preserved due to the evolving internal variables being the impact history 
carriers in this case. Within this article, the structure of the proposed model is described, its scale levels are introduced, the 
constitutive relations and evolutionary equations are given, as well as the algorithm for the implementation of the model. 
 



 

P. Trusov et alii, Frattura ed Integrità Strutturale, 49 (2019) 125-139; DOI: 10.3221/IGF-ESIS.49.14                                                                   
 

128 
 

 
THE STRUCTURE OF MULTI-SCALE MODEL WITH PHASE TRANSFORMATIONS 

  
 solid phase transformation in a polycrystalline material is understood as a polymorphic transformation leading to 
changing the physic-mechanical properties of some region in the material at a micro- and/or meso-level as a result 
of the crystal lattice transformation under external influences (loading, temperature, etc.). A phase is understood as 

some part of a grain being characterized by a specific type of crystal lattice, a chemical composition, a type of solid solutions, 
etc., at a fixed moment of a thermo-mechanical loading process. From the point of mathematical modeling and solid 
mechanics a phase is understood as a certain sub-region inside a material which behavior under deformation is described 
by the constitutive relations of the fixed type with a specified (determined from the solution of some auxiliary subtasks) set 
of properties being defined by the parameters and the current value of internal variables. 
With a goal of modeling the phase transformations of polycrystalline materials in thermo-mechanical processing the multi-
level model of a hybrid type is developed. Within this model three structure-scale levels are taken into consideration inside 
the material. They are macro-level, meso-level I and meso-level II. Internal variables are added into the structure of the 
model at each scale level being the carriers of impacts' history. The macro-level is supposed to be the material representative 
volume (consisting of some hundreds of grains). To analyze a behavior of this volume, the boundary value problem is 
offered to be formulated and solved (for the chosen computational domain) with determination of fields for stresses, strains 
and temperature in the considered material volume. The finite element method procedure is applied for the numerical 
solution of the problem at the macro-level. Within the framework of the proposed multilevel model the problem of 
determining the reaction of a material to the applied thermo-mechanical impact is essentially nonlinear. A step-by-step 
procedure (in time) is used to solve it. Decomposition of the whole problem according to the physical processes is realized. 
The subtasks of determining the stress-strain state, the temperature and the problem of determining the phase composition 
of a material are considered being connected (using a step-by-step procedure). The solution of this problem allows to 
determine the impacts (velocity gradient, temperature and temperature rate of change) at each point of the considered area 
(i.e. within each finite element), which are then given down to a deeper scale level within the multilevel model. Thus, within 
the framework of the finite element scheme at the macro level, the finite elements themselves are precisely the elements of 
meso-I. As a basic constitutive relation at the meso-I, the generalized Hooke's law in the rate relaxation form and the heat 
equation are used. The mentioned constitutive relations contain in their structure explicit internal variables. The values of 
those variables depend on the history of the impacts on the material, are changed in the process of deformation and are 
determined from the deeper scale levels as a response to the thermo-mechanical effects. For example, the tensor of elastic 
properties of a material, the inelastic strain rate tensor, the heat capacity coefficient, the thermal conductivity tensor, the 
power of internal heat sources can be such variables. Herewith, an element of the meso-I is understood as a certain 
subdomain of a grain, the state of which at each moment of the thermo-mechanical loading process is assumed to be 
homogeneous in all parameters characterizing the state of the meso-I element, and within which the crystal lattice of the 
material can be considered as approximately perfect (a grain is supposed to consist of crystallites with a minor 
misorientation). In turn, a meso-I element is represented as an aggregate, consisting of N elements of meso-II, such as 
subgrains, fragments, cells, phase components. Wherein, to determine the response of the meso-I element, the modified 
statistical model (taking into account the relative position of the neighboring meso-II elements) is used [17]. Herewith, a 
size of a meso-II element is assumed to be so small that its state can be considered as a homogeneous one according to all 
parameters at each time moment. The velocity gradient, temperature, and the rate of temperature changing are transmitted 
from meso-I to meso-II as impact factors. A model based on crystal plasticity is applied for the meso-II element. The Voigt 
hypothesis is used when transmitting exposure from meso-I to meso-II. At any fixed moment of a thermo-mechanical 
loading process each meso-II element is supposed to be in some specific phase (i.e. it is always single phased), but the phase 
characterizing it can change as a result of external influence, which leads to a change in all its properties. Belonging to a 
particular phase determines the basic properties of the meso-II element, including the type of its crystal lattice. Orientation 
of the axes of the moving coordinate system [18–19] is considered as known for each meso-II element. This orientation 
changes during a deformation process (as a result of rotation for the meso-II element or as a result of the transformation 
the element lattice after the realized phase transition). The moving coordinate system is associated with the lattice of the 
element (but, doesn't coincide with it in general case, as the lattice may have distortions in the deformation process). As a 
result of thermal and mechanical effects (transmitted from the upper scale level) in case of fulfillment the thermodynamic 
criterion a phase transition can occur in a meso-II element. Herewith, due to the homogeneity of the all parameters' values 
for the meso-II element, it is assumed that its entire volume undergoes a phase transformation simultaneously. All processes 
in the meso-II element are considered in its moving coordinate system being oriented definitely with respect to the 
laboratory coordinate system. Wherein, the following modes are realized in the meso-II element: inelastic deformation by 
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shears on slip systems, the lattice rotation i.e. quasi-rigid motion with a spin tensor being determined by one or another 
rotation law (here, the Taylor model is used), temperature deformation, deformations of an element caused by a phase 
transformation, elastic distortions of a crystal lattice in a crystallite,  the changing the lattice type of the crystallite and all its 
properties (internal variables) as a result of phase transformation, the changing the orientation of the moving coordinate 
system for the element as a result of a phase transformation, the formation of internal heat sources as a result of inelastic 
deformation processes and phase transformations at meso-II level. The acting stresses in the element, the inelastic strain 
rate tensor, the power of internal heat sources (due to latent heat of phase transformations and inelastic deformation), the 
orientation tensor of a meso-II element, characterizing the current orientation of the moving coordinate system for the 
element with respect to the fixed laboratory coordinate system, and the information about phase composition are 
transmitted as a response from meso-II to meso-I. The statistical averaging procedures are carried out at the meso-I level 
(among all meso-II elements, taking into consideration the current orientations of the moving coordinate systems for the 
elements) to determine the values of the model internal variables at an integration point for a finite element (for simplex-
elements, this matches the data for an entire finite element). Thus, the meso-I element constitutive relations are “formed” 
in the process of solving the problem depending on transformation of the material structure at a deeper scale level in the 
thermo-mechanical processing and may change during the process itself. The constitutive relations constructed by this way 
for the meso-I element are then used to solve the boundary value problem at the macro level at the next time step. 
The subject for discussion in this article is a description of the structure and the implementation features of the model at 
the meso-levels I and II. 

 
About motion decomposition for the meso-II element 

 
As in solving the boundary value problems connected with description of thermo-mechanical processing for polycrystalline 
materials, as a rule, it is necessary to take into consideration large displacement gradients, the problem under consideration, 
being essentially nonlinear, is posed and solved in a rate form. Within the framework of the model, description of kinematics 
for the meso-II element is based on introduction of the multiplicative decomposition for the deformation gradient by the 
following way:  

 
e=        e tr p tr pf f f f f f r f f f ,        (1) 

 
where ef , trf , f , pf  are elastic, transformation, temperature and plastic components of the deformation gradient; ef  is 
the component of the deformation gradient characterizing the elastic distortion of the lattice with respect to the rigid moving 
coordinate system connected with the lattice of the initial phase; r  is the rotation tensor describing the material rotation 
together with the moving coordinate system (from the initial position of the moving coordinate system to its current 
position); pf  is the plastic component of the deformation gradient that does not change the symmetry properties of the 
material. Based on the accepted decomposition (1) the transposed velocity gradient is defined as follows: 
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   (2)      

     
When considering metallic polycrystals, the magnitude of the elastic distortions of the lattice can be assumed to be small, 
therefore ef I  and the relation (2) is converted into the following form: 
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l f f f f r r r f f r r f f f f r

r f f f f f f r
   (3)  

 
Then, the additive decomposition of the transposed velocity gradient in the actual configuration based on the multiplicative 
decomposition (1) can be represented as follows 
 

    e tr pl l ω l l l  ,          (4) 
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where   Tω r r  is the spin determining the rate of rotation for the moving coordinate system connected with the material 

symmetry axes of a meso-II element,   1e e el f f  is the rate of elastic distortions of the lattice. 
 
The model constitutive relations for a meso-II element  
As the model is intended to describe the processes of thermo-mechanical treatment being characterized by large 
displacement gradients, geometrically nonlinear kinematic and constitutive relations are used in its structure [18–19]. The 
rate statement of the problem is done in the current configuration and the following constitutive relations are used [20–21]: 

 

              
о

ρ; ; ;ρ̂
cr p tr cr T

Πk : l ω l l l k k k ω ω k k σ   (5) 

  
where Π  is the tensor of elastic properties for the meso-II element, defined by the constant components in the basis of the 

crystallographic coordinate system of the current phase in the initial configuration;  ̂l v  is the transposed velocity 

gradient for the material particles of the meso-II element in the current configuration, transmitted from the meso-I; pl  is 
the plastic part of the relative velocity gradient connected with the shears on the slip systems inside the meso-II element in 

the deformation process; l  is the thermal part of the transposed relative velocity gradient; trl  is the transposed velocity 

gradient of the transformation deformation, associated with the phase transformation in the material; , crk k  are the 

weighted Kirchhoff stress tensor and its corotational derivative; 
о

ˆρ, ρ  are the densities of the meso-II element's material in 
the initial (unloaded) and current configurations (the density depends on the phase the element at the considered moment 
is in); σ  is the Cauchy stress tensor of the meso-II element; ω  is the spin tensor of the meso-II element (to define it, any 
physically based model of rotation can be used, for example, it can be the Teylor's model of turning in a fully constrained 
conditions [22] or the model of lattice rotation [18]). Wherein, at each moment of the process, the rotation of the rigid 
moving coordinate system's axes of the meso-II element, connected with the lattice of the element in its current phase, is 

considered. The plastic part of the velocity gradient  pl  is determined by shears on the slip systems in the meso-II element: 
 

     


 
1

;
K

k k kp

k

l b n           (6) 

 
where k is the number of the slip system. Herewith, the shear rate on each slip system in the meso-II element is considered 

as a function of the acting stresses   k , critical shear stresses   k
с  and temperature  : 

 
          , ,k k k

сf ;          (7) 

 
in general case, any physically valid model can be used to define it. In particular, a non-linear viscoplastic model [21, 23] can 
be used: 
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с

H          (8) 

 
The thermal part of the transposed relative velocity gradient in the meso-II element is defined using the following relation: 
 

  l α ,           (9) 
 

where α  is the thermal expansion tensor for the material of the meso-II element. Herewith, a simplification can be accepted 
for cubic crystals, and the relation for the thermal component of the velocity gradient can be written in the following form: 
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α θ   l I ,           (10) 
 

where α  is the coefficient of linear thermal elongation-compression for the material of the meso-II element, I  is the unit 
tensor. The power of internal heat sources in the meso-II element is determined by two components connected with, firstly, 
the inelastic deformation on the slip systems in the element, and secondly, the phase transformation in the meso-II element:  

 

     


  
1

ρ̂
K

k k
meso

k

q g           (11) 

 

where g  is the specific latent heat of a phase transition,   is the new phase (martensite) formation rate. 
 
Determining the transformational part of the deformation gradient at the meso-II  
Martensitic transformations occur at speeds comparable to the speed of sound in the crystal environment under 
consideration. In multilevel models, as a rule, the martensitic phase transitions are considered at a higher scale level [for 
example, 24], than the meso-II one (according to the division of the scale levels adopted in this work). It allows to use the 
magnitude of the martensite volume fraction in the considered volume to describe phase transitions, “smoothing” and 
assuming it as a continuous value in the process of thermo-mechanical loading, i.e. the martensitic transformation process 
is “smeared” in time and space. Within the framework of this model, the meso-II element is assumed to be so small, that it 
turns into a new phase almost instantly. Wherein, out of all possible variants of the transformational system, an energetically 
more favorable one is chosen. The hypothesis is accepted that the phase transition is fully realized in a time step (in the 
general algorithm of the inelastic deformation model). For the elements experiencing a phase transition at a given time step, 
a time step is divided into a fixed number of substeps. The number of substeps is determined in numerical experiments. 
For these elements experiencing a phase transition, the temperature changing per step is neglected; the velocity gradient is 
assumed to be fixed throughout the entire step. In this case, the additive decomposition of the transposed velocity gradient 
in the current configuration, based on the multiplicative decomposition (4), can be represented as: 

 

   e tr pl l ω l l  ,          (12) 
 

Within the framework of the proposed model, at this stage, the relations, allowing to determine the gradient of 
transformational deformation for the martensitic phase transformation obtained in [25–26] based on the application of 
crystallographic theory of martensitic transformations in steels [27–28], are used. The transformational deformation gradient 
of the meso-II element during the transformation from the initial phase to the new one under the conditions of deformation 
with an invariant plane can be represented as follows: 
 

  ξtrf I sm ,            (13) 
 

where the vector m  of a normal to the invariant habit plane (a unit vector) and the vector s  of a shear set the 
transformational system (these vectors are not perpendicular in a general case). These vectors aren't determined by the 
crystallography entirely, like their analogues in the theory of plastic shear along slip planes. They are calculated taking into 
consideration the magnitude of changing the lattice parameters during the phase transition and the accommodation 
mechanisms accompanying it [25]. The volume fraction ξ after a martensitic phase transition within the element, is 
introduced into consideration. The dependence of the volume fraction ξ on the current time at the step is given by a smooth 
function, being satisfied by the following properties: 1) at the beginning of the first substep of the phase transition, it is 
equal to 0, at the end of the last substep it is equal to 1; 2) at the ends of the phase transition interval (time step), the ξ 
derivative is equal to 0 or 1. It is necessary to note that the latter requirement is optional. Further, an internal step-by-step 
process of solving according to the initial scheme of the elastic-viscoplastic problem is organized for these elements. 
Wherein, the three components of the deformation gradient are changed: the elastic one, the transformational one and the 
viscoplastic one. Herewith, the critical shear stress is determined by averaging the critical austenite stress (with a weight (1– 
ξ)) and the critical martensite one (with a weight ξ). The transformational component of the relative velocity gradient trl  is 
determined by the transformational deformation gradient, being depended on the phase transformation type occurring in 
the material, and has the following form: 
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 
 1 ξ

=
det( )

tr tr tr
tr

l f f sm
f

.         (14) 

 
 
CHOOSING THE PHASE TRANSFORMATION CRITERION FOR A MESO-II ELEMENT 
 

n researches on phase transformation modeling different approaches for creating the relations to determine the volume 
fraction of a new phase in a material under consideration depends on the impact process parameters are used. The 
Koistinen-Marburger [29] type equations are the most widely used ones in material science practice in case of macro-

phenomenological description of heat treatment processing. The relations of such a type and their different modifications 
make it relatively easy to determine parameters in equations for phases' volume fractions from the macro-experiments. But 
these relations don't allow to take into consideration the physics peculiarities in the process of a new phase forming at the 
meso-scale and don't allow to include besides the temperature impact also the mechanical one into consideration. They also 
naturally don't allow to analyze the influence of a thermo-mechanical impact parameters on the process of transformation. 
In recent decades, the alternative thermodynamic approach to the constructing the kinetic equations for the description of 
the phase volume fractions evolution and the phase transformations criteria has been evolved. This approach allows to 
construct the models for continuum media  and suggest the relations for thermodynamic driving forces of phase 
transformations based on the analyses of the nature of the effects on the material and the physic-mechanical processes 
occurring inside the structure of the material during these effects.  
 
The short review of the thermodynamic criteria of phase transformations 
Nowadays, there is a significant amount of papers wherein exactly the thermodynamic approach is used to construct a phase 
transformation criterion. The short overview for the ways of introducing this criterion in some of them is given below. 
In the paper [30] the double phased system (austenite + martensite) is considered as a thermodynamic nonequilibrium 
system with dissipation. It is supposed that the principle of maximum dissipation can be used to describe its evolution. 
Herewith, the dissipation power is determined as a difference between the power of external forces and the Helmholtz free 
energy rate of change for the quasistatic isothermal case considered in the cited article. The specific Helmholtz free energy 
(per unit volume) is supposed to be consisted of three parts: free chemical energy, surface energy and elastic strain energy. 
An increment of free chemical energy is expressed by the difference between the corresponding free chemical energies of 
martensite and austenite being multiplied by the volume fraction of martensite. It is assumed to be a linear function of 
temperature. Elastic energy is defined as convolution of the stress and the difference between total and phase deformations. 
All the values are determined at the meso-scale. The change in free energy associated with the boundaries is introduced 
through the analyses of jumps in chemical and elastic energy and boundary motion speed. The term associated with 
discontinuities at the phase interface also appears in the power of external forces. In terms of the specified parameters, an 
expression for the dissipation power is obtained. The force criterion (analogically with plastic deformation) is used as a 
condition of phase transformation realization. The critical stresses of phase transformations are supposed to be linearly 
related to the accumulated shifts in austenite (moreover, the coupling coefficient is negative, i.e. the accumulated shifts in 
austenite make the critical phase transformation stresses lower) and the martensite volume fraction. In [31] the relation for 
dissipated energy with excretion the generalized thermodynamic force of phase transformation (being conjugate to the rate 
of change for the specific volume fraction of the martensite phase) explicitly is given. The specific relations for the 
thermodynamic forces under various conditions (for example, the absence of internal additional stresses in austenite from 
phase transformation) are considered. Separately, the definition of the thermodynamic force associated with the 
inhomogeneous plastic deformations in the austenitic phase is considered. Herewith, the inhomogeneous plastic 
deformations are assumed to be proportional to the average plastic deformations in austenite. 
In the paper [32] it is suggested to determine the generalized thermodynamic force using the difference of the Helmholtz 
free energy in the initial and martensite phases and the meso-stresses' work averaged over two phases made on the difference 
between transformation and plastic deformations in the initial and final phases. In turn, the Helmholtz free energy is 
represented as a sum of “chemical” energy (determined by the position of the atoms in the phases and dependent on 
temperature) and strain energy (dependent on elastic strains and temperature). The excess by the generalized thermodynamic 
force its critical value for a given material is used as a criterion of a possibility for the phase transformation. 
In the paper [33] the rate of change for the volume fraction of each variant in martensite phase is determined by the power 
low depending on the shear stress in the habit plane of the transformation and hydrostatic stress. To determine the critical 
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resistant stress to the martensite transformation, the Olson's and Roitburd's solution, based on the assumption of the 
spherical shape of the original grain, is used. For the martensite plate the shape of a flattened ellipsoid is taken. Into the 
proposed relation, there is chemical energy difference (the Gibbs free energy), surface energy of an "austenite – martensite" 
boundary and transformation strain energy. 
In [34] to describe the martensite transformation, a set of internal variables is introduced (the martensite volume fractions 
for each of the possible variants). Their associated thermodynamic forces are introduced being dimensioned as energy per 
unit volume. The dissipation rate due to the phase transition has been defined as the sum of multiplications of 
thermodynamic forces and the rate of change for the martensite fraction (in all variants). The thermodynamic forces are 
dependent on elastic energy, temperature, crystallography of the martensite transformation, the fraction of the transformed 
phase (according to different variants). The criterion for implementation of the phase transformation is also the excess of 
the critical value by the chosen thermodynamic force. 
In [35], following the model proposed by Olson and Cohen [36], temperature and hydrostatic stress (related to the stress 
intensity) are considered to be the driving forces of the transformation; plastic deformations of the austenitic phase are 
taken into account; it is believed that martensite nuclei are formed by the intersection of the shear bands. 
In [37–38] an expression for the thermodynamic potential is introduced. As a potential the Gibbs free energy is used. 
Constitutive relations (for strains and entropy) are obtained from the second law of thermodynamics. The expressions for 
the dissipation rate, the thermodynamic force conjugated with a fraction of the martensite phase, and the temperature for 
the onset of the martensite transformation (taking into account the effective stresses) are given. The formulations for the 
corresponding evolutionary equations are given. 
The paper [24] contains a thermodynamic description of the phase transformation process, based on Onsager’s (linear) 
irreversible thermodynamics. In accordance with the Onsager formalism, dissipation is represented as a sum of the products 
of affinity (essentially, thermodynamic forces) and flows. The hypothesis of additive decomposition for entropy into 
reversible (elastic) and irreversible (transformational) components is accepted. The latter is determined through the latent 
heat of a phase transformation. The expressions for thermodynamic forces are obtained from the 2nd law of 
thermodynamics in the form of dissipation inequality using different thermodynamic potentials such as internal energy, the 
Helmholtz and the Gibbs free energies. The achievement of the corresponding critical value by the thermodynamic force 
on the transformation system is taken as the criterion of phase transformation. 
The paper [39] contains thermodynamic analysis of phase transformation. In particular, the relations for the components 
of free energy (Helmholtz) for the representative volume and energy dissipation are given. Free energy has been defined as 
a sum of elastic strains energy, crystallographic energy (often called chemical energy) and energy of interphase boundaries 
(the latter can be neglected, as well as energy of the defects (point, dislocations, etc.)). Elastic energy is decomposed into 
elastic energy of the average (for a representative volume) elastic strains and energy of interphase interactions. To determine 
the latter, analytical solution in terms of the Green function and the Eshelby tensor is applied. Using the Legendre 
transformation transition from the Helmholtz free energy to the Gibbs free energy is realized. The latter is completed with 
restriction on the total fraction of the phases and the non-negativity condition for the fraction of the phase for each variant 
using Lagrange multipliers method and Kuhn-Tucker conditions. The expression for internal dissipation, determined by the 
difference between the power of external forces and the rate of change for free energy is obtained. From it, the relation for 
the driving (thermodynamic) force is derived to determine the  phase boundary displacement. 
Paper [40] provides relations for determination the “driving mechanical force of transformation” (in fact, the work of 
applied stresses on transformation strains), elastic stored energy of the environment, and dissipated plastic work of 
deformations. At the same time, for a specific implementation, the criterion of accumulation of a certain plastic strain level 
in the residual austenite is used as a condition for a phase transformation. 
In [41], additive decomposition of specific (per mass unit) entropy into elastic (reversible), plastic and transformation parts 
is introduced. The transformation part is determined by the weighted sum of the latent heat of phase transformations 
according to different variants divided by phase transition temperature. The rate of change for the plastic part, related only 
to austenite, is determined by the sum of multiplications of the entropy change measure due to the shifts in each slip system 
and the shift rate in the corresponding systems. Following by the procedure proposed by Coleman and Noll, the dissipation 
function is introduced being represented by the sum of multiplications for thermodynamic forces and flows. A general form 
of the defining relation and expression for thermodynamic forces is obtained from the dissipation inequality. From the 
internal energy (included into the dissipation expression), the transition to the Helmholtz free energy is made. The 
Helmholtz free energy is proposed to be written as a sum of the following components: elastic, thermal (including the heat 
of phase transformations), surface and energy of defects (dislocations). Specific expressions for each of the introduced 
components are proposed. A similar decomposition for the thermodynamic (driving) forces of phase transformations and 
plastic deformation is proposed. Relations for determination all the components included into the specified decomposition 
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are introduced. The kinetic equations for the corresponding flows (fractions of martensite according to the variants and 
shear rates for slip systems) and the phase transformation criterion (in terms of the thermodynamic force) are formulated. 
In [42–43], the Helmholtz free energy and the dissipative function are introduced for each of the phases. Free energy is 
represented as a sum of chemical, elastic and “accumulated plastic” parts. A specific view for each of them is proposed. The 
dissipative function is determined by the difference between the mechanical work performed on the body and the Helmholtz 
free energy. The expressions for the driving force and the criterion of phase transformation are also obtained from the 
dissipation inequality. 
In [44] there is a criterion of phase transformations (for direct and reverse ones) including the driving force of the phase 
transformation (consisting, in turn, of the mechanical (stress) and thermodynamic (determined through the "chemical" 
potential of components) and the critical value of the driving force. And besides, the latter is adopted to be the same for 
the forward transformation and the reverse one. At the same time, the critical force of formation for a martensite nucleus 
is assumed to be higher than its critical value for propagation of the transformation front. 
 
About the phase transformation criterion choosing 
Within the framework of the proposed structure of the model, the formation of the new phase is assumed to occur at the 
meso-level II. For a fixed time moment, a thermodynamic criterion of a phase transformation is checked out for each 
element, allowing to choose an active transformation system for a given element from energy considerations, as well as the 
elements (within a representative volume) being energetically beneficial to move into a new phase under these conditions. 
In this work, the meso-II element is considered as a closed thermodynamic system which has undergone some influence 
(temperature and kinematic) at a fixed moment of process. The phase transformation criterion is formulated for the meso-
II element and, due to homogeneity of all parameters' values for this element, the hypothesis, that its entire volume goes 
into a new phase completely if the phase transformation criterion is carried out for it at a fixed moment of process, is 
accepted. The construction of the phase transformation criterion for an element is based on the approach, used in the work 
[45], where based on the principles of classical thermodynamics of irreversible processes [46–47], a kinetic equation for a 
new phase fraction in a certain multiphase volume, has been obtained. The hypothesis about the "single-phased" meso-II 
element at any arbitrary moment allows to simplify the expression being obtained in the above-cited paper for the 
thermodynamic driving force of phase transformation and write it in the following form: 

 

 0 0 *
1 2; , , , ..., ,p p eG G G G G G phase c c      q ,      (15) 

 
where 0G  is the free energy (Gibbs) function of the element in the initial phase; pG  is the free energy (Gibbs) function of 
the element into some phase p , whereto the element can (theoretically) go at the current values of the model internal 

variables under conditions of a given thermo-mechanical effect; 0 pG   is the phase transformation driving force; 1 2, , ...c c  

are the component concentrations; eq  is an elastic strain measure;   is temperature. Herewith, free energy of the system is 
considered to be a function of the current phase characteristics, the component composition, the elastic part of strain 
measure and temperature. According to the introduced criterion, the phase transition is realized for the meso-II element if 
the change of the thermodynamic potential value for the system (in this case, it is the Gibbs free energy) during the 
transformation from the initial phase (index 0) to some new phase (index p) exceeds some critical threshold. It should be 
noted that within the framework of the proposed model numerical implementation, the values of all internal variables and 
parameters characterizing the stress-strain state of the meso-II element are changed at the end of a time step within the used 
computational scheme. Wherein, the verification of the phase transition criterion for each meso-II element is performed at 
the current step. For this, a special computational procedure with splitting the main numerical algorithm time step into 
substeps and the “virtual” transfer of the element into a new phase is implemented inside the step. If the phase transition 
criterion is fulfilled at the end of a step for an element, it is considered to have passed into a new phase and all its properties 
are redefined. The other elements (for which the criterion of phase transformation was not fulfilled) remain in the initial 
phase. Details of the algorithm for checking the phase transition criterion fulfillment for the meso-II element are described 
below in the corresponding section. 
The specific free energy of an element in the initial phase is assumed to consist of the specific elastic energy eG  and the 
specific chemical energy chG : 

 

   0
1 2, , , , , ..., .e e chG G phase G phase c c  Πq        (16) 
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The contribution associated with the specific surface energy is not taken into consideration, as the phase boundaries are not 
explicitly considered within the statistical submodel of this level. Herewith, within the accepted structure of the multilevel 
model, all properties of the meso-II element (such as the tensor of elastic characteristics, the elastic part of the strain 
measure, etc.) are defined in its moving coordinate system associated with the lattice, and therefore, are also dependent on 
the phase the element is in, at the considered moment of the process. The elastic part of the specific free energy is a quadratic 
form of the elastic part of the strain measure and in the moving coordinate system of the element at the current time 
moment it can be determined as follows: 
 

  , , : :e e e eG phase Π Πq q q ,         (17) 

 
where elastic deformations in the meso-II element are determined as a result of integration of the elastic part of the relative 
velocity gradient el  at a current moment (i.e., they directly depend on the external action parameters, the type of the element 
crystalline lattice and the orientation of this lattice at the considered moment of the process), where el  is defined from the 
decomposition (4) without the transformational part, but with allowance for plastic and temperature deformations in the 
element at the considered time moment. 
It is assumed that the specific free energy of some newly formed phase p  can be represented in the following general form: 

 

   1 2_ , , , ..., _ , , ,p ch trG G new phase c c G new phase    σ  ,     (18) 

 
where trG  is a transformational part of the specific free energy associated with implementation of the phase transformation 
in the system under consideration (the meso-II element). In particular, in simulating a martensitic transformation, the rate 
of temperature changing is assumed to be so high, that no diffusion processes have time to go through the material; i.e., the 
component composition of the element remains unchanged. For further describing the diffusion phase transformations, it 
is necessary to take into consideration the cooling rate and to describe the diffusion processes occurring in the material at 
the meso-level. Within this work, in describing the diffusionless (martensitic) transformation, the transformational part of 
the specific free energy is introduced in the following form: 
 

 _ , :trG new phase σ σ sm .         (19) 

 
The chemical component of the meso-II element specific free energy in a certain phase includes both free energy of a 
separate phase itself and contributions into the free energy due to mixing and chemical interaction of the components. By 
analogy with the works [48–50], it is determined using the following relation: 

 

       
1

1 2
1 1 1 1

1 1
, , , ..., ln

n n n n
ch k kj

k k k k j
k k k j k

R
G phase c c c g c c c c r

  
  



    

      ,   (20) 

 
where kc  is a k-component concentration in a phase under consideration, measured in mole fraction; kg  is a specific free 

energy of a separate component k in the considered phase; a сN v z   is a mole volume (where aN  is an Avogadro 

constant; cv  and z  are the unit cell volume of the material and the number of atoms per cell in the considered phase, 

respectively); kjr  is a parameter, depending on temperature and describing interaction between the components k and j 

within the considered phase; B aR k N , where Bk  is a Boltzmann constant. The free energy of each individual component 
kg  is approximated by a functional dependence on temperature of the following type: 

 

   1 2 3 lnk k k kg          ,         (21) 

 
where 1

k , 2
k , 3

k  are the constants determined for the constituent component of the material, depending on the phase it 
is in, using the thermodynamic databases [51]. 
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FEATURES OF THE MODEL IMPLEMENTATION ALGORITHM AT THE MESO-LEVEL  
  

escription of the algorithm general structure for implementing a two-level statistical model without taking into 
consideration phase transitions can be found, for example, in the paper [52]. The features of the algorithm taking 
into consideration the phase transformations in the material in the process of external thermo-mechanical impacts 

are described below. 
At the considered moment of the thermo-mechanical loading process, each element of meso-II (within the framework of 
the modeled representative volume of meso-I) is exposed to the impact from the upper scale level. The velocity gradient 

ˆ l v , temperature   and the temperature changing rate are transmitted into it. The problem of determining the stress-
strain state of a meso-II element is solved in its own moving coordinate system (at each fixed moment of the process it is 
definitely oriented relative to the laboratory coordinate system). The calculation is carried out at the current (determined at 
the end of the previous time step) values of all parameters (including the internal variables). The shear rates for all slip 
systems within the element are calculated using relation (8), being allowed to determine the inelastic part of the relative 
velocity gradient pl  from Eqn. (6). The spin ω  of an element moving coordinate system is determined using the Taylor 

rotation model (full constraint). The thermal part of the transposed relative velocity gradient l  is determined from relation 
(9). Farther, the velocity of lattice elastic distortions for a material in the initial phase is calculated: 

 
e p    l l ω l l .          (22) 

 
The last relation is integrated to determine the part of the deformation gradient ef , characterizing the elastic distortions of 
the lattice with respect to the current rigid moving coordinate system of the meso-II element. The value of the Kirchhoff 
weighted stress tensor corotational derivative crk  is determined from relations (5), and as a result of its integration, the 
Kirchhoff tensor k  and the Cauchy stress tensor σ  are defined themselves. Thus, as a result of integrating the found values 
at the end of the step, stresses and strains acting in the element are defined. The procedure of the stress-strain state 
determining is performed for all meso-II elements within the framework of the mezo-I representative volume with the 
definition of the values for all model internal variables at the end of the time step. Farther, a phase transformation at the 
meso-level II is assumed being able to occur during the considered time step. The verification of the phase transition 
criterion (15) fulfillment is carried out for all meso-II elements with examining all possible transformation options for each 
element. In particular, in simulating a martensitic transformation, the meso-II element is assumed being able to experience 
24 transformation variants (corresponding to 24 variants of martensite, obtained from the Kurdjumov-Sachs relationships 
[27–28]). The most energetically favorable transformation option, for which the value of the thermodynamic driving force 

0 pG   is greater (at the end of the considered time step), is chosen of all the possible ones. To implement the phase 
transition in the meso-II element within the framework of the adopted calculation scheme, the full time step is divided into 
a fixed number of substeps (their required number is determined in computational experiments). The element is assumed 
jumping completely into a new phase in a full time step. Herewith, the smoothing the transition process is realized at the 
substeps inside the full step, with introducing the fraction of a new growing phase.  The process of solving the problem 
within the time step (at substeps) is carried out without taking into account the changing the temperature component of the 
impact inside the step, the velocity gradient (full) is determined at the beginning of the full time step and is considered as 
fixed within the whole step. An internal step-by-step process for solving the elastic-viscoplastic problem (on substeps) is 
implemented at the time step for each element, taking into account the transformational component of the relative velocity 
gradient trl , defined from relation (14) (wherein, the accommodative mechanisms are realized due to plastic shears). In 
calculating inside the step the critical shear stress is defined as a result of averaging the critical stresses of the initial (with a 
weight (1– ξ)) and the new (with weight ξ) phase. The value of the element thermodynamic potential used in the energy 
criterion in a new phase is assumed to be determined at the end of the total time step, i.e., for the state the considered 
element has completely passed into a new phase.  
It should be noted, that in the process of thermo-mechanical loading, orientation of the axes of the element moving 
coordinate system may change both as a result of the element quasi-solid motion in the process of inelastic deformation 
(with the spin tensor) and as a result of the phase transformation in the material. During phase transformation (of a 
martensitic type), orientation of the element moving coordinate system axes is assumed to be changed almost instantly if 
the criterion of phase transformation is fulfilled. It means, that if the criterion of a phase transformation was fulfilled in the 
element at the end of the time step, then it comes to a new time step with a new orientation of the moving coordinate 
system axes corresponding to its new crystal lattice. In particular, in the martensitic transition the orthogonal tensor, defining 

D 
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the saltatory change in orientation of the element moving coordinate system axes as a result of the transformation, can be 
directly determined from orientation relationships (for example, the Kurdjumov-Sachs ones [27]). This lattice orthogonal 
transformation is also included into multiplicative decomposition of the transformational deformation gradient under the 
martensitic transition [25] and ensures existence of an invariant plane. 
Thus, if the meso-II element experienced a phase transition at the considered time step, the values of all model internal 
variables are recalculated for this element at the end of the step (taking into consideration the change of the properties and 
the element lattice type as a result of phase transformation). 
 
 

CONCLUSIONS  
 
he multilevel crystal plasticity model for describing inelastic deformation of polycrystalline materials taking into 
account the evolving internal material structure is formulated within the paper. The model allows to take into 
consideration diffusionless solid-state phase transitions of martensitic type. This model, unlike the most existing 

macro-phenomenological models, provides the opportunity to study evolving material meso- and microstructure. This 
allows to describe the intense elastoplastic deformations and material’s properties after the end of thermo-mechanical 
processing in  detail. Within the presented structure of the model three scale levels are distinguished. They are the macrolevel, 
the mesolevel-I and the mesolevel-II. The peculiarity of the model is its hybrid character, when the boundary value thermo-
mechanical problem is solved at the macro-level by the finite element method, and lower scale levels are used to consider 
the material structure applying the statistical modeling methods. The hybrid character of the model determines its relatively 
low computational costs, allowing to set and solve problems for constructions, not only for material representative volume. 
Another distinctive feature of the model is that the smallest structural element is so small that it instantly turns into a new 
martensitic phase. The choice of the martensitic transition variant is based on the thermodynamic criterion of the phase 
transformation. At the same time, it is not necessary to introduce a huge number of such elements into consideration, the 
statistical sample under consideration should be a representative volume in the statistical sense, i.e. addition of new elements 
to the existing ones does not change the current average material properties. In this case, one of the main characteristics 
determining the anisotropic mechanical and thermo-physical properties of the meso-II element is orientation of the 
crystallographic coordinate system being abruptly changed as a result of phase transition. The mathematical formulation of 
the relations describing different modes of inelastic deformation (plastic deformations, lattice rotations, phase 
transformations), taking into consideration the influence of the external parameters (temperature, applied loading and their 
rates) and the material characteristics (chemical and phase composition, stacking fault energy, internal stresses due to the 
defective structure), is provided in the paper. The features of the model implementation algorithm associated with a high 
rate structure evolution in the phase transition process are given. 
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