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ABSTRACT. Contacts with sharp edges subject to oscillatory loading are likely to nucleate cracks from the 
corners, if the loading is sufficiently severe. To a first approximation, the corners behave like notches, where the 
local elastic behaviour is relieved by plasticity, and which in turn causes irreversibilities that give rise to crack 
nucleation, but also by frictional slip.  One question we aim to answer here is; when is the frictional slip 
enveloped by plastic slip, so that the corner is effectively a notch in a monolithic material? We do this by 
employing the classical Williams asymptotic solution to model the contact corner, and, in doing so, we render 
the solution completely general in the sense that it is independent of the overall geometry of the components.  
We then re-define the independent parameters describing the properties of the Williams solution by using the 
inherent length scale, a procedure that was described at the first IJFatigue and FFEMS joint workshop [1].  By 
proceeding in this way, we can provide a self-contained solution that can be ‘pasted in’ to any complete contact 
problem, and hence the likelihood of crack nucleation, and the circumstances under which it might occur, can 
be classified.  Further, this reformulation of Williams' solution provides a clear means of obtaining the strength 
(defined by crack nucleation conditions) of a material pair with a particular contact angle.  This means that the 
results from a test carried out using a laboratory specimen may easily be carried over to any complicated contact 
problem found in engineering practice, and a mechanical test of the prototypical geometry, which may often be 
quite difficult, is avoided. 
 
KEYWORDS. asymptotic approaches; complete contacts; fretting fatigue; mode mixity; sharp notches; small scale 
yielding; Williams solution 
 
 
 
INTRODUCTION 
 

ur aim is to provide a framework for the understanding of fretting fatigue for complete contacts, when the 
geometry of the contact itself and both the type and history of loading are completely general.  We do this by 
studying only the extreme corners of the contact, and which we assume, for now, are both closed and adhered. 

The form of the contact and the loading then enter the solution only through the generalised stress intensity factors, IK , 

IIK , defining the loading on a monolithic semi-infinite wedge.  So, we begin by stating Williams' solution [2] for the stress 
at the tip of a semi-infinite sharp notch, of included angle in the solid of 2 , which shows that the state of stress may be 
written in the form 
 

     1  1 , I III II
ij I ij II ijr K r f K r f       ,       (1) 

 

where  , ,i j r  , and, assuming plane strain, 
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     , ( , , )zz rrr r r                (2) 
 

where r  is the radial distance from the notch tip, the angle   is measured from the notch bisector and taken to be 
positive in the counter-clockwise direction, the eigenvalues I ,   II , are the lowest roots of the equations 
 

sin 2 sin 2 0I I              (3) 
 

sin 2 sin 2 0II II              (4) 
 

and the generalised stress intensity factors are defined along the bisector of the ‘notch’  0   as 
 

  1

0
  lim ,0 I

I
r

K r r 
 


           (5) 

  1

0
lim ,0 II

II r
r

K r r 
 


           (6) 

 

Williams' solution may be written in an alternative form that is more suitable for frictional contacts.  The punch has an 
included angle  , and is in contact with a half-plane, as shown in Fig. 1, so that the total included angle is 2    .  

The contact interface lies along the line  / 2    , and is denoted int , while the distance from the notch tip along 

the interface line is x .  The direct  p x , and shearing  q x , interfacial tractions may therefore be written as 
 

        1  1  0 1  0 1 , I II I III II
int I int II int I IIp x x K x f K x f K x K x   

                 (7) 
  

       1  1  0 1  0 1 , I II I III II I II
r int I r int II r int I r II rq x x K x f K x f K x g K x g   
                 (8) 

 

where compression is taken to be positive, and the generalised stress intensity factors calibrated along the interface line are 

denoted 0
nK , where  ,n I II , and are found from 

 

 0 I
I I intK K f  ,  0 II

II II intK K f         (9) 
 

where 
 

 
 
 

   
I

r intI
r I

int

f
g

f








  , 
 
 

 
II

r intII
r II

int

f
g

f








         (10) 

 

 
 

Figure 1: A diagram of the idealised geometry considered, including the coordinate system. 
 
 
EDGE SEPARATION 
 

illiams’ solution displays a power law variation of the stress field with radial distance from the notch tip and 
expresses this as a series expansion, of which we consider only the first two terms; IK  and IIK .  Because each 
term in the series is raised to a different power (except in the case of an edge crack when   ), the relative 
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strengths of the two competing terms vary with radial distance from the notch tip, which creates an intrinsic length scale 
in the solution; the mode I  term is more strongly singular and dictates contact edge behaviour, whilst the mode II  term 
less strongly singular (or for punch angles less than 77.4  the mode II  term is bounded) and controls the stress field 
slightly further from the sharp corner.  This length scale can be emphasised by replacing the two parameters   IK  and IIK  

in Williams' solution with two new composite parameters 0d  and 0G .  The definition of these quantities involves raising 

the generalised stress intensity factors IK  and IIK , to fractional powers, and for this reason, we modify the definition 

depending on whether the remote loads excite positive or negative values of IK  and ,IIK  in order to avoid imaginary 
solutions.  For simplicity, let us first consider the case when the remote loads excite positive values of the generalised 
stress intensity factors IK  and IIK .  In this case, 0d  and 0G  are defined as 

1

0    
I IIII

I

K
d

K

  
  
 

, 
1 1

0    
II I

II I I II
I IIG K K
 
   

 
          (11) 

 

where it is now clear that 0  d has the physical significance of representing the boundary, in some way, between mode I  

domination and mode II  domination of the stress field, whilst 0  G represents the magnitude of loading.  Eq. (1) can now 
be re-written as 
 

 
   

1  1 

0 0 0

, I II

ij I II
ij ij

r r r
f f

G d d

  
 

 
   

    
   

 .       (12) 

 

We now, as in Eq. (7) and (8), write out the direct  p x , and shearing  q x , tractions, but this time with the alternative 

formulation of the stress field, and we also, for compactness, use the shorthand  n n
ij ij intf f  , as 

 

 
    1  1 

0 0 0 0

, I II

int I IIrp x x x
f f

G G d d

 


 
   

   
     

   
      (13) 

  

    1  1 

0 0 0 0

, I II

r int I II
r r

rq x x x
f f

G G d d

 


 
 

 
   

     
   

 .      (14) 

 

When the remote loads are such that the generalised stress intensity factors IK  and IIK , are of the same sign (either both 

positive or both negative), Williams' solution implies that the direct traction  p x , is of a different sign in the mode I  

and mode II  dominated regions of the stress field.  When IK  and IIK  are both positive, there is implied separation at 

the edge of contact, but closure is implied further away from the contact edge.  Conversely, when IK  and IIK  are both 
negative, closure is implied at the edge of contact, but separation is implied to extend from the interior.  It is particularly 
important in the latter case, to appreciate that a state of separation may not actually arise because, by the time the mode II 
solution dominates the mode I solution, the next term in the series, which has not been found, may be important .  In any 
case, when the generalised stress intensity factors take on similar signs, the length along the interface at which Williams' 
solution implies that the boundary between separation and closure lies, based on violations of the condition   0p x  , is 

denoted 0x , and is given simply by setting   0p x  , and solving for the value of 0/x d  at which this condition is met, 

which gives 
 

1

0

0

I II
II

I

x f

d f

 




 
  
 

           (15) 

 

Note that, perhaps surprisingly, when represented in this way, the strength of the remote loading 0G , does not influence 

the position of the boundary between separation and closure 0x , if normalised by 0d . Also, note that, for remote loading 

that results in IK  and IIK  taking on opposing signs, Williams' solution implies no change in sign of the direct traction 
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 p x .  Thus, when IK  is negative and IIK  is positive, closure is implied in both mode I  and mode II  regions.  

Conversely, when IK  is positive and IIK  is negative, Williams' solution implies separation throughout the whole of the 
region controlled by the asymptote.  This implication of gross separation means that Williams' solution cannot yield any 
further characterisation of contact edge behaviour, therefore we do not consider this case in the subsequent analysis. 
 
 
REGIONS OF FRICTIONAL SLIP 
 

o estimate the implied extent of slip, based on violations of the slip condition, the adhered interfacial tractions 
must be substituted into the slip condition    q x fp x  , where f  is the coefficient of friction.  This 
calculation reveals the position of all the implied boundaries between stick and slip within the edge region 

controlled by the asymptote, where we denote the distance from the corner to any point at which slip condition is just met 
as sx .  For simplicity, we begin by considering the case when IK  and IIK  are both positive, such that a small region of 

edge separation is implied, with an adjacent slip region.  Explicitly, the slip extent, 0/x d , is given by 
 

 

1

0

I II
II II

s r
I I

r

x f f f

d f f f

 
 

 

  
    

          (16) 

 

Plots of the implied slip extent (from Eq. (16)) as well as a line showing the implied separated region (from Eq. (15)), for 
the case when IK  and IIK  are both positive, are shown in Fig. 2, for three sample punch angles  60 ,90 ,120     .  

 
 

  
 

Figure 2: Plots of the implied regions of slip, stick, and separation, when both IK  and IIK  are positive, for punch angles of 

 60 ,90 ,120     , where the black line denotes the boundary between closure and separation, the red line the position at which the 

    q x fp x  condition is met, and the blue line the position at which the     q x fp x  condition is met. 

 
For the case when the remote loads excite stresses that result in a negative IK  and a positive IIK , the parameters 0d  and 

0G  must be defined differently from Eq. (11), to avoid raising a negative number to a fractional power.  Thus, we define a 

new parameter n nK K  , and substitute it in place of the negative stress intensity factor, so that, for example when IK  is 

negative and IIK  is positive we have 

stick
- slip

+ slip

separation

60° Punch
KI ,  KII

0.5 1.0 1.5 2.0 2.5 3.0 3.5

xs

d0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
f

90° Punch

stick

+ slip

separation

KI ,  KII

1 2 3 4

xs

d0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
f

120° Punch
KI ,  KII

+ slipseparation

0.5 1.0 1.5 2.0 2.5

xs

d0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
f

T 

http://www.gruppofrattura.it
http://dx.medra.org/10.3221/IGF-ESIS.25.05&auth=true


 

                                                                D. A. Hills et aliii, Frattura ed Integrità Strutturale, 25 (2013) 27-35; DOI: 10.3221/IGF-ESIS.25.05 
 

31 
 

1

0    
I IIII

I

K
d

K

  
  
 

, 
1 1

0    
II I

II I I II
I IIG K K
 
   

 
          (17) 

 

For this case, the stresses, instead of being given by Eq. (12), are instead given by 
 

 
 

   
1  1 

0 0 0

, I II

ij I II
ij ij

r r r
f f

G d d

  
 

 
   

     
   

        (18) 

 

so that the direct  p x , and shearing  q x , are given by 
 

 
    1  1 

0 0 0 0

, I II

int I IIrp x x x
f f

G G d d

 


 
   

   
      

   
      (19) 

 

 
    1  1 

0 0 0 0

, I II

r int I II
r r

rq x x x
f f

G G d d

 


 
   

   
      

   
       (20) 

 

When IK  is negative and IIK  is positive, closure is implied through the asymptotic region.  However, depending on the 
punch angle,  , and the coefficient of friction, f , various slip regions are implied at the edge and/or interior of the 

contact.  To compute the implied slip extents we substitute Eq. (19) and (20) into the slip condition    q x fp x  , and 

solve for 0/x d , again, denoting any boundary between stick and slip as sx , which gives 
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0

I II
II II

s r
I I

r

x f f f

d f f f

 
 

 

  
    

          (21) 

 

 
 

  
 

 

Figure 3: Plots of the implied regions of slip and stick, when IK  is negative and IIK  is positive, for punch angles of 

 60 ,90 ,120     , where the red line denotes the position at which the     q x fp x  condition is met, and the blue line the 

position at which the     q x fp x  condition is met. 
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Plots of the implied slip regions (from Eq. (21)) as a function of the coefficient of friction f , for the case when IK  is 

negative and IIK  is positive, are shown in Fig. 3, for three sample punch angles  60 ,90 ,120     .  Finally, for cases in 

which both IK  and IIK  are negative, separation is implied to extend from the interior of the contact, with closure and a 
slip region at the edge of contact whose extent is controlled by the next term in a series expansion.  We do not consider 
this possibility here or in any subsequent analysis. 
 
 
THE PLASTIC ZONE 
 

he implied elastic state of stress near a sharp feature is singular, but in practice the singular behaviour is truncated 
by the presence of a plastic zone incorporating a process region, and whose extent is determined by the strength 
of the applied load and the yield strength of the material.  In order to determine the size of the plastic zone, 

implied by violations of the yield condition, we use the second invariant of deviatoric stress 
 

  2 2 2 2
2 3rr zz rr zz zz rr rJ                           (22) 

 

and note that, with this scaling von Mises yield condition is 
 

2
2 3J k            (23) 

 

where k  is the yield stress of the material in pure shear.  We then modify Eq. (12) to be specifically along the interface of 
the contact, i.e. 
 

 
 

   
1  1 

0 0 0

, I II

ij int I II
ij int ij int

x x x
f f

G d d

  
 

 
   

    
   

      (24) 

 

and use this expression (Eq. (24)) together with Eq. (22), and then simplify the result, to give 
 

 

 
 

 
 

 
2 1   2 1   2  

2
2 0

0 0 0

I II I II

I int II int I II int
x x x

J G p p p
d d d

   

  
   



               
       

   (25) 

 

where  I intp  ,  II intp  , and  I II intp   represent the  -dependence of the mode I , mode II , and mixed mode 
terms in the solution, respectively.  We now impose the yield condition given in Eq. (23), denote the size of the plastic 
zone along the interface line px , and solve for 0 /G k , which gives 
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I int II int I II int

x x xG
p p p

k d d d

   
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   



               
       

  (25) 

 

If the punch angle  , is specified, Eq. (25) can be used to determine the size of the plastic zone 0/px d , as a function of 

strength of the applied load 0 /G k , and this is plotted for punch angles of  60 ,90 ,120      in Fig. 4.  This figure 

illustrates the perhaps surprising property that the relationship between the strength of the applied load 0 /G k , and the 

normalised size of the plastic zone specified along the interface line 0/px d , is not monotonically increasing.  This is 

because, as described in Hills et al. [1], as strength of the remote load is increased, the plastic front rotates and changes 
from being very mode I  like when loaded lightly to being very mode II  like in character when loaded heavily.  
Therefore, although the maximum radius of the plastic zone does increase monotonically in size with stronger loading, 
when specified along the interface line, the plastic radius takes on its maximum value when the remote loading causes the 
maximum plastic radius to coincide with the interface line.  The plastic length along the interface then decreases for 
stronger loads, because the maximum plastic radius rotates away from the line corresponding to the frictional interface. 
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Figure 4: A plot showing the size of the plastic zone p 0x / d , as a function of strength of the applied load 0G / k , for example punch 

angles of  60 ,90 ,120     , shown in red, black, and blue, respectively. 

 
 
DETERMINATION OF THE DOMINANT SLIP PROCESS: PLASTIC VS. FRICTIONAL 
 

e have described how to calculate the relative sizes of the implied regions of adhesion, slip, and separation, and 
also how the size of the plastic zone specified along the interface line scales with remote load, so we are in a 
position to address the question that motivated this analysis;  "when is the frictional slip enveloped by plastic 

slip, so that the corner is effectively a notch in a monolithic material?"  The first thing to be said on this issue is that, if 
frictional slip is implied to extend out past the mode II  region of the solution and into the region where bounded terms 
control the behaviour of the contact, then whether or not the plastic zone fully envelops the zone of frictional slip at the 
edge of contact cannot be determined through examination of the implications Williams' asymptotic solution.  To find out 
when this condition obtains we consider the value of the implied traction ratio in the mode II  region, which, for the 

example punch angles of  60 ,90 ,120     ,  is  0.3224,  0.2189,   0.8500II
rg     , respectively.  Thus, if the coefficient 

of friction is less than the absolute value of this implied traction ratio, i.e. if II
rf g  , then the question of whether or not 

the frictional slip zone is enveloped by plasticity cannot be determined by consideration of Williams' asymptote.  If, 
however, slip is not implied to extend past the mode II  region of the solution, and is contained within the asymptote, i.e. 

if II
rf g  ,  then further examination of the implications of Williams' solution is merited.  For cases when II

rf g   and 

thus adhesion is implied in the mode II  region of the solution, we can calculate the strength of load required to imply a 

plastic zone of equal size to the implied zone of frictional slip.  This is achieved by setting    0 0/ /p sx d x d  in Eq. 

(25), and solving for the value of 0 /G k .  The result of this calculation is plotted against the coefficient of friction f , for 

punch angles of  60 ,90 ,120     , in Fig. 5.  Also plotted in Fig. 5, are three horizontal dashed lines showing the values 

of II
rg   for the three punch angles considered.  This information is added because, as stated above, if the coefficient of 

friction is less than this value, i.e. if II
rf g  , then slip is implied to extend outside the region controlled by the 

asymptote, and the magnitude of load required to imply a process zone of equal size to the frictional slip zone cannot be 
calculated within the asymptote.  The solid lines in Fig. 5 plot the magnitude of load 0 /G k , that results in the conditions 

   0 0/ /p sx d x d  and II
rf g   both being met, while the dotted lines plot the value of 0 /G k  that result in only the 

first condition being satisfied.  So, for loads greater in strength than the solid line in Fig. 5, slip is implied only in the mode 

I  dominated region (because II
rf g  ), and the process zone is implied to be larger than the slip zone in this region. 

Thus, in this case the contact is expected to behave like a notch.  For  loads greater than the dotted lines in Fig. 5, which 
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are in the range II
rf g  , the process zone is implied to be as large as the slip zone in the mode I  dominated region, but 

a second slip zone is implied to extend past the mode II  dominated region.  These dotted lines are included in the figure 
to distinguish between cases in which the slip zone in the mode I  dominated region is fully enveloped by plasticity at a 

coefficient of friction below II
rg  , which implies that for coefficients of friction greater than II

rg   there will be no slip, 

from the cases in which the magnitude of load required to envelop the slip zone in the mode I  dominated region does 
not appear on the plot, which implies that, for the range of load shown in the figure, the slip zone is larger than the 
process zone and that the contact will slip.  The curves in Fig. 5 corresponding to the case 120    (shown in blue) 

illustrate these two distinct possibilities; when IK  and IIK  are both positive (Left) neither dotted nor solid lines appear 

on the plot and the slip zone is implied to be larger than the plastic zone in the range of f  and 0G / k  shown in the 

figure, but when IK  is negative and IIK  is positive (Right) a dotted line appears on the plot and thus if II
rθf g  no slip is 

implied. 
 

  
 

Figure 5: Plots showing the strength of load 0 /G k , above which the process zone and frictional slip zone at the edge of contact are 

implied to be of equal size when II
rf g   (solid lines), and when II

rf g   (dotted lines), for punch angles of  60 ,90 ,120     , 

plotted in red, black, blue, respectively.  This is done for the case when both IK  and IIK  are positive (Left) and when IK  is negative 

and IIK   is positive (Right).  Also shown are the values of II
rg   for each punch angle (horizontal dotted lines), using the same colour 

scheme as for the other lines. 
 
 
CONCLUSIONS 
 

his paper develops further our physical understanding of the physical implications of the asymptotic form given by 
Williams, allowing not only mode mixity but also the competing effects of frictional and plastic slip to be treated; 
the former, but not the latter, is independent of the magnitude of the load.  The ‘output’ of this paper is therefore 

a specific answer to the question ‘When is a sharp contact corner rigorously notch-like?’ and equally ‘When is frictional 
slip likely to be important?’.  Space limitations preclude the application of the results to real problems, which  requires 
calibrations for IK  and IIK  in terms of the applied loads.  This last step then permits these results to be applied directly 
to any complete fretting (or potentially fretting) contact, by simply ‘pasting in’ this asymptotic form. 
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