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ABSTRACT. As often done in design practice, the Wöhler curve of a specimen, 
in the absence of more direct information, can be crudely retrieved by 
interpolating with a power-law curve between static strength at a given 
conventional low number of cycles N0 (of the order of 10-103), and the fatigue 
limit at a “infinite life”, also conventional, typically N∞=2·106 or N∞=107 
cycles. These assumptions introduce some uncertainty, but otherwise both the 
static regime and the infinite life are relatively well known. Specifically, by 
elaborating on recent unified treatments of notch and crack effects on infinite 
life, and using similar concepts to the static failure cases, an interpolation 
procedure is suggested for the finite life region. Considering two ratios, i.e. 
toughness to fatigue threshold FK=KIc/Kth, and static strength to endurance 
limit, FRR0, qualitative trends are obtained for the finite life region. 
Paris’ and Wöhler’s coefficients fundamentally depend on these two ratios, 
which can be also defined “sensitivities” of materials to fatigue when cracked 
and uncracked, respectively: higher sensitivity means stringent need for design 
for fatigue. A generalized Wöhler coefficient, k’, is found as a function of the 
intrinsic Wöhler coefficient k of the material and the size of the crack or 
notch. We find that for a notched structure, k<k’<m, as a function of size of 
the notch: in particular, k’=k holds for small notches, then k’ decreases up to 
a limiting value (which depends upon Kt for mildly notched structures, or on 
FK and FR only for severe notch or crack). A perhaps surprising return to the 
original slope k is found for very large blunt notches. Finally, Paris’ law should 
hold for a distinctly cracked structure, i.e. having a long-crack; indeed, Paris’ 
coefficient m is coincident with the limiting value of k’lim. The scope of this 
note is only qualitative and aims at a discussion over unified treatments in 
fatigue. 
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INTRODUCTION 
 

t is well known that initiation and propagation of cracks are well distinct phenomena, and depend strongly on the 
material, geometry and load levels (for a review see for example Fleck et al [1]). For nominally plain specimen, at low 
load levels, where we expect fatigue failure at high cycle numbers (HCF, High Cycle Fatigue) practically the whole life 

is expended in enucleating the crack, rather than propagating: indeed the latter phase only takes the final few cycles. At high 
load levels (those giving low number of cycles, LCF), cyclic plastic deformation takes place rapidly leading to failure. These 
various processes result in the well know empirical Wöhler curve (or, more in detail, in the Basquin-Coffin-Manson’s law). 
Vice versa, for cracked specimen, fatigue life (often denominated “residual”) is all given by propagation, generally by Paris’s 
law. The case of notched specimen is somewhere intermediate, and neither Basquin-Coffin-Manson’s law nor Paris’s laws 
(nor indeed any other law) apply directly to find the fatigue life. Various alternatives are possible: trying to follow the cyclic 
plastic deformations at the notch tip (perhaps using Neuber’s rule) to link initiation to use Basquin-Coffin-Manson’s law at 
some critical point, and/or integrating Paris’ law for a crack once initiated at the crack tip itself. The two processes are not 
straightforward and certainly at not of the same order of sophistication as the direct use of the Wöhler curve or Paris law 
as it is possible with plain specimen or cracked ones. Also, some inconsistencies may arise in the procedure, as the use of 
Paris law requires complications for taking into account of short crack behaviour, crack shielding and closure etc. On the 
other hand, the use of Coffin-Manson also requires some care when applied to the multiaxial elasto/plastic stress field 
induced around the tip of a notch (even if the global stress field is uniaxial). In short, the apparently more accurate 
procedures may be sometimes more complicated but basically remain extrapolations, and hence their degree of accuracy 
may not be necessarily satisfactory.  
At the other extreme, i.e. at very low number of cycles (or indeed static failure), rupture is expected to be dominated by 
plastic flow or brittle fracture, and it is only apparently easier to make an estimate of the strength of a notched component. 
Most often, in design rules of a notched components, a distinction is drawn between “brittle” and “ductile” materials: in 
the former case, it is suggested that the peak stress criterion is appropriate, whereas in the second case it is generally 
considered that a “redistribution” of stresses occurs, such that the ultimate limit is only reached when an entire section of 
the specimen is loaded at the yield strength. It is pointed out here, however, that the distinction is far from quantitatively 
clear, as it is well known in the context of fracture mechanics: indeed, a cracked specimen is “brittle” for sufficiently large 
crack sizes in the sense that it fails by critical condition for propagation of the crack, whereas it would be ductile, i.e. failing 
by plastic collapse, for lower sizes of the crack, and this independently on the material itself. Hence, the definition of 
brittleness depends on absolute dimension of the crack, and indeed various authors have recognized this [2-3]. A similar 
“size effect” is expected therefore to occur for a notch of sufficiently “sharp” geometry and indeed for a rounded notch, 
although the transition brittle to ductile (and vice-versa) would occur at different geometrical sizes. In the corresponding 
case of infinite life in fatigue, the equivalent of the transition between ductile and brittle behaviour is the transition between 
fatigue-limit dominated failure (initiation), and fatigue threshold dominated initiation. Also, it is well recognized in fatigue 
that notches behave more or less like cracks (crack-like notches, in the Smith and Miller [4] classification and as recognized 
in the Atzori and Lazzarin [5] criterion) up to a certain size (which depends on material properties), and it is expected that, 
although plasticity makes a difference, in the static case something similar could happen. Certainly, there is no fundamental 
reason to make a distinction between “brittle” and “ductile” materials when examining notched structures. In particular, for 
a very small notch, it is evident that the nominal strength will be unaffected, and would for example remain the nominal 
yield stress over the net section (or, without any significant difference, the gross, given it is nearly the same) of the specimen, 
and for larger notch sizes of sufficiently sharp appearance, the effect of the notch will be close to the effect of a crack of 
“same size”, and finally, when the notch size is large enough, the peak stress criterion will become actually the most stringiest 
condition of all. Notice that the full yield in the net section limit is independent on geometry, so is actually valid also for the 
crack. Finally, notice that in terms of the gross section, this reasoning translates without modification, when the ratio 
Anet/Agross , where Anet is the net section, and Agross is the gross section, is introduced. 
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Another reason why notch size effects are less clear than crack size effects, and have perhaps escaped the attention of 
researchers, is that a notch doesn’t have a well-defined “dimension”. However, this problem should not be amplified. In 
fact, the dimension of a crack is only apparently better defined, because this is only when in the case of a through-crack, but 
the situation is largely less clear when the crack is curved, or has a fully developed 3d shape. In this case, as well as in any 
notch case, the size effect refers in principle to the comparison of specimen of exactly the same geometry (including the 
crack or the notch features) but of various magnifications. The choice of the linear dimension for the magnification factor 
is arbitrary. The difficulty starts when the equivalent condition for the comparison with the appropriate material property 
has to be chosen. This is where the crack and the notch case, strictly speaking, differ. The crack case presents a singular 
solution which by definition is self-similar, and therefore the entire solution, asymptotically, is given for a certain mode of 
deformation, independently on the exact geometry. Therefore, a single factor is sufficient to define the “strength” of the 
singular field – and this the well-known stress intensity factor. In the case of the notch, in principle every geometry is 
different, in the sense that the stress field cannot be characterized by a single geometrical factor, but in the region where the 
notch is equivalent to a crack (crack-like notch), the required procedure is to find the path of the equivalent “crack” --- 
although this may not be necessarily simple and uniquely defined. A very important paper by Atzori et al [6] has suggested 
a criterion to correlate notch and crack behaviour at the fatigue limit to real components and verified by means of an 
impressive set of 78 fatigue test series for 10 different steels and aluminium alloys taken from the literature. This paper 
however is limited to the behaviour at the fatigue limit, while here we try to investigate more general trends. 
This paper is clearly qualitative, and oriented towards the classical approaches which suggest to interpolate between static 
strength and fatigue limit: we added to this only the El Haddad type of law, which take into account of Linear Elastic 
Fracture Mechanics either at the static strength, or at the fatigue limit. However, we haven’t added consideration of crack 
propagation laws, nor compared to these predictions, which so far we are unable to do. Paris law for crack growth has a 
series of limitations, to cover also the case of "initiation" and "short crack" propagation. For example, in previous studies 
[7-10], we have shown that for Paris' law to be compatible with the behaviour of SN curves for uncracked materials, one 
needs to modify it to include also the "material properties" of Basquin law. It would be a final goal to have a model containing 
the two constants of Paris law and the 2 constants of Basquin law: also, with the two fatigue "thresholds" --- this complete 
and comprehensive model would amount to six constants in total. However, such a simple model at present is too difficult 
and not existing. When Paris law constant m is low, the SN curve for the material (when uncracked) has a rather different 
slope than the integrated form of Paris law [11-12], that is k>>m. Possible corrections would need to include the effect of 
plasticity at the crack tip, which effectively increases the size of the “equivalent crack”, but again this is not pursued in the 
present paper. 
The scope of the present paper is therefore to try to “unify” crudely various concepts for static and fatigue design, without 
any intention to give radically new methodologies, or empirical formulae, but with the simpler scope of examining various 
ranges of validity and overlap between the theories which often are treated separately, and with principally the suggestion 
to use interpolation between robust estimates of limit conditions and the use of all the material properties which are available, 
rather than extrapolation from a single methodology using a limited set of material properties, independently on how refined 
the methodology may appear to be. This is not necessarily limited to preliminary calculations, but also when there is 
possibility of some experimental investigations, as a simpler route for understanding of the behaviour in fatigue of a notched 
component. Ultimately, the core of the message becomes quite obvious to the engineer, and indeed it is the base of various 
standard procedures for specific fields, like for example the design guides of gears (see for example [13]): “interpolate” 
between limit conditions, using some knowledge of the notch size effect (in the lack of direct experimental data) as recently 
emerged more clearly at least for the infinite life region. In particular, the entire spectrum of possible behaviour can be 
described in a single diagram strength vs. notch/crack size.  
 
 
EMPIRICAL LAWS IN FATIGUE 
 
Wöhler curve 

mpirical laws have emerged in fatigue since when Wöhler was conducting his famous experiments of rotating 
bending fatigue in railways axles for the German State Railways in the 1860s. Various authors noticed empirically 
that it was convenient to plot SN data on a log/log (or a semi-log) diagram (for a detailed study of the old literature 

see the recent paper by Sendeckyj [14]). Since then, the so-called Wöhler SN diagram has been widely used. There is no 
fundamental reason to write the curve as a power-law, and indeed alternative equations have been suggested, but the power 
law between 2 given points is probably the simplest or most used form for the plain specimen, in the form (see Fig.1): 
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     k k
R fN N N0 0 ,    fN N N0     (1) 

 
where ∆σ is the stress range (we assume at the moment for simplicity that amplitude and range coincide i.e. the load ratio 
R=0, although it is clear that in general it would perhaps be appropriate to rewrite Eq.(1) in terms of amplitude of the cycle 
σ) and the N0, and N  are the number of cycles as defined in Fig.1. Clearly, Eq.1 also implies 
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and typically for steels considering N∞=107 and N0=103, for FRR0=2 we would have k=13.3, while for FR=3, k=8.4, 
in the typical range k=6-14 for Al or ferrous alloys.  
In strain-controlled fatigue, the fatigue curve is replaced by a sum of two power/law functions assuming the fatigue life to 
be dominated by plastic strain in the LCF regime, and elastic strains or stresses in the HCF. The resulting well know equation 
(Coffin/Manson) is expected to be more accurate (if anything because it has more degrees of freedom to reproduce the 
experimental SN curve) although there is still a need to introduce the cut-off thresholds on very low and very high number 
of cycles, particularly on the low number of cycles where it tends to have the wrong concavity.  
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Figure 1: The simplified Wohler curve. 

 
Paris’ law 
The second important power law in fatigue is Paris’ law, giving the advancement of fatigue crack per cycle, va, as a function 
of the amplitude of stress intensity factor ΔK (see Fig.2) 
 

   m
a

da
v C K

dN
;       th IcK K K      (3) 

 
where ΔKth is the “fatigue threshold”, and KIc the “fracture toughness” of the material. There is therefore no dependence 
on absolute dimension of the crack. The law is mostly valid in the range 10-5—10-3 mm/cycle, and in a simplified form it can 
be considered intersecting ΔKth and KIc at 10-6, 10-4 mm/cycle, respectively. This means that the constant C is not really 

arbitrary, since by writing the condition at the intersections, 
 

 
 m m

th Ic

C
K K

6 410 10
. 

An alternative form can be obtained considering that Paris’ law is in general valid in the range 10-5—10-3 mm/cycle and hence 
instead of the constant C it is perhaps more elegant to define a constant ΔK-4, i.e. the range corresponding to a speed of 
propagation of 10-4 mm/cycle 
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where C’=10-4 mm/cycle by definition. In other words, 
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From the linearity in this range 10-5—10-3 mm/cycle in the log/log plot, Fleck et al [1] suggest to find the Paris exponent m as 
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and Fig.16 of their paper seems to confirm this assumption. More in general, it is possible to assume  
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where th
av  is a conventional velocity at the threshold, and c

av  at the critical conditions.  
A first obvious (and well known) link between the two curves (Wöhler and Paris) is obtained when considering the life of a 
distinctly cracked specimen having an initial crack size ai. Under the assumptions of constant remote stress and no 
geometrical effects, for m>2 the following is obtained (where the dependence on the final size of the crack af  has been 
removed as relatively not influent) 
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This is to be considered as a Wöhler curve of the cracked component and the Wöhler exponent turns out to be exactly 
equal to the Paris exponent, k’=m. It is interesting however to remark that the SN curve depends on the initial crack size, 
ai. Hence the threshold condition from Eq. (8) would tend not to coincide with that directly obtained from the threshold 
value which also depends on ai but with a different power  
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In fact the two powers in Eqs. (8,9) coincide only if (m-2)/2m=1/2 which is only true for very high m, showing in fact that 
the Paris law should near the threshold have a vertical continuous slope, and the simplification of the Paris law corresponds 
to a bifurcation to the solution given by the two branches (the threshold, and the power-law regime). This is another example 
of the risk of using these equations for extrapolations, without considering also the other information we have on the 
material properties. 
So far, we have only dealt with the case of either completely uncracked or the distinctly cracked specimen. Most real cases 
would include notched specimen, or cracks of small size. We therefore need to introduce the theories on the effect of 
notches and cracks of varying size on fatigue life.  
 
Kitagawa and Atzori/Lazzarin diagrams 
For infinite life (or safe-life) design, Atzori & Lazzarin [5] have recently proposed a new diagram (a generalization of the 
celebrated Kitagawa diagram), which serves as a single “map” showing the fatigue limit reduction due to notch and cracks 
as a function of defect (or notch) size. For the interaction between fatigue limit and fatigue threshold for short cracks in the 
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Kitagawa diagram El Haddad et al. [15] had proposed the famous interpolating equation (concept of defect sensitivity): for 
a centred crack of size a, in terms of failure for a range Δσ f 
 

 
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          (10) 

 
where a0  is the intrinsic material size for infinite life, defined as 

 

 
 

   
thK

a
2

0
0

1
           (11) 

 
where Δσ0 is fatigue limit and ΔKth is fatigue threshold of the material. In fact it is well known that cracks smaller than this 
size do not follow Paris law not even for ΔK>ΔKth, whereas the material is limited in this range by the fatigue limit, Δσ0. 
 

 
Figure 2: The Paris law. 

 
The denomination “intrinsic crack” is due to the fact that the fatigue limit from (11) is also 
 





  thK
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and hence (10) is equivalent to (12) when the intrinsic crack is added. As originally proposed by Smith & Miller [4] any notch 
is practically equivalent to a crack up to a certain size, depending on the stress concentration factor, Kt. Hence, Atzori & 
Lazzarin [5] suggested to consider only (i) crack-like behaviour treatable with standard fracture mechanics (in particular, with 
Eq.(10)) and (ii) large blunt notches only, treatable with the simplest stress concentration factor approach. This is exemplified 
in the lines of Fig.3. For a constant size of the notch, this criterion can also be put in terms of a limit Kt, Kt* , beyond which 
fatigue limit is no further decreased, giving an area where cracks are supposed to initiate from the notch but not propagate, 
the so-called “non-propagating crack zone”. Notches with Kt>Kt* behave as defects of same dimension, i.e. are “crack-like 
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notches”. By defining instead of a transitional stress concentration factor, as transitional size of the notch, a*, as the 
intersection of the horizontal line  tK0 /  with the long crack threshold, gives1 

 

 t
a

K
a

*
2

0

           (13) 

 
For notches lager than this size a*, simply the peak stress condition can be written in terms of failure range Δσ f 

 
  f tK0  /           (14) 

 
where tK  is the stress concentration factor. 
It is natural to extend these concepts to the static failure case, drawing an El-Haddad “equivalent line” for the static case, 

and accordingly introduce the dimensions Sa0  analogous to (11) and depending this time by KIc, the toughness of the material 

and R  its tensile strength as  
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Figure 3: The Atzori-Lazzarin generalized diagram (Atzori & Lazzarin [16]). 

 
 

FATIGUE AND CRACK “SENSITIVITIES” AND OTHER MATERIAL PROPERTIES 
 

n Fleck et al [1] and in Ashby [17, 18], a large number of material properties of interest are given, and of particular 
interest are the “intrinsic crack” sizes, a0, and a0S which can be retrieved qualitatively from some of the maps. They 
permit to classify “crack sensitivity” of the material, under static and fatigue load respectively (for example, a material 

                                                 
1 More precisely, the intersection should be defined with the El Haddad line not the long crack threshold. The difference 
can be neglected however, if the stress concentration is not too small. 
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with high a0 will tend to be insensitive to cracks up to the size of the order of a0 in fatigue). Analogously, the two ratios 
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K
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R
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0
 define the “fatigue sensitivities”.  

Specifically, materials with high FK are fatigue sensitive when cracked, and those having large FR are fatigue sensitive when 
uncracked. In the former case, in the presence of a crack it is useful to design for fatigue crack propagation (like in the 
“damage tolerance” design approach), because the static limit is very high and the threshold condition is perhaps too strict, 
and there is margin to gain from a more elaborate design. Similarly, when FR>>1, it is convenient to design when uncracked 
for the fatigue limit, or perhaps to the finite life required. The opposite is true when FK, FR are both small and close to one, 
in which case it is generally sufficient to design statically. Finally, notice that as generally FK>>FR, a material sensitive to 
fatigue when uncracked is likely to be also sensitive to fatigue when cracked, whereas the vice versa is not true, a material 
sensitive to fatigue when cracked may not be sensitive to fatigue when uncracked. 
The two sensitivities (“crack sensitivity” and “fatigue sensitivity”) are not unrelated, as obviously a0S/a0=(FK/FR)2: when 
FK>>FR as it is usual, a0S/a0>>1 a fortiori. In other words, a material that is more sensitive to fatigue when uncracked than 
when cracked, then in terms of tolerance to crack sizes, is significantly more sensitive to cracks in fatigue than in static 
loading. Materials which are equally sensitive to fatigue when cracked or uncracked, would have equal sensitivity to cracks 
under fatigue or static loads.  
From the maps in Fleck et al [1] and in Ashby [17, 18], a large number of qualitative data can be retrieved on these material 

properties and their ratios, as well as the characteristic sizes a0 , Sa0  (which in turn for a given stress concentration factor 

can be put in terms of a*, Sa * ). For example, two maps are reproduced in Fig.4,5 here. In particular, Fig.4 gives the fatigue 

threshold vs the fatigue limit (in terms of amplitude endurance limit), and constant lines of 
 
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e

K
2

Δ1

4
, which can be put 

in relationship with the a0  defined in (11). For a0  we recognize values around 1 μm for some ceramic materials, up to few 

mm for some metallic alloys or polymers), whereas for the corresponding Sa0  we see the value for composite materials, 
whereas in this particular collection for metals and polymers the yield stress rather than the failure stress is given and hence 

the plastic radius can be estimated rather than our Sa0 , and finally for rocks and ceramics the compression failure stress is 
given. In all cases, we notice a certain correlation i.e. grouping around the diagonal line, corresponding to a tendency to 
have high values for properties at same time (however, within this general trend, there are remarkable exceptions, especially 
within single class of materials). However, it is seen that this holds more for uncracked properties, i.e. FR is relatively constant 
for materials (and for the definition of FR  in Fleck et al [1] and in Ashby [17, 18] for some metals and polymers, we find 

FR>1). Vice versa, FK varies significantly more and more still Sa0  and a0  (particularly Sa0 ). In other words, as it is commonly 
known, to an increase of strength does correspond generally an increase of fatigue strength, but an increase of toughness 
does not always correspond to an increase of threshold. Moreover, to a greater threshold not always corresponds an 
increased fatigue limit, and even more the case that to an increase of toughness corresponds an increase of static strength. 
For example, for steel and metallic alloys, as is well known, to greater yield strength corresponds a reduced toughness, but 
this is not true for other classes of materials, such as composites, ceramics and cements. 

In general, Fk>>FR, and for metals typical values are 5-20, and 2, respectively, so that Sa0  is about 100 times greater than 

a0 .  
 
 
GENERAL WÖHLER CURVE 
 

he two Atzori-Lazzarin curves (static, and infinite life) permit some qualitative considerations on the intermediate, 
finite life, region of notched and cracked structures. The resulting map for general cracked or notched specimen is 
as shown in Fig.3, as first presented by Atzori-Lazzarin at a conference in Italy [16]. The shaded area corresponds 

to the “finite life region”. Given a material with Wöhler curve of exponent k, and of Paris exponent m, we expect that the 
limiting Wöhler curve exponent for a notched component will be the one for a large crack obeying Paris’ law, for which 
klim=m. Therefore, we can expect a notch of varying size and sharpness to cause a reduction of the Wöhler slope k<k’(a)<m, 
i.e. intermediate between k and m. Some calculations show this is indeed the case, and draw some estimates on the obtained 
values. 

T 
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Figure 4: Asbhy maps for fatigue threshold vs. fatigue endurance limit (reproduced with permission from (Fleck et al. [1], Fig. 10). 

 

 
Figure 5: Asbhy maps for fracture thoughness vs. strength (see appropriate definitions in the legend). Reproduced with permission from 
Asbhy [17], Fig. 4.8, or Asbhy [18], Fig.10). The contour lines indicate the size of plastic radius.  
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By looking at fixed dimension of the notch, and interpolating between static and infinite-life strength, we can obtain the 
“generalized Wöhler curve”, as well as a “generalized Wöhler coefficient, k’(a)”. We shall start with a simplified version of 
the Atzori-Lazzarin schematically represented in Fig.5, i.e. the criterion with line segments, to make the easiest possible 
estimate of the generalized slope k’ --- we shall return to the more accurate El Haddad version in the last paragraph. Since 
a0S/a0=(FK/FR)2 and a*/a0=Kt2 we also obtain a0S/ a*=(FK/FR)2 / Kt2 .  Hence if Kt< FK/FR  then a0S> a*  whereas if Kt 
>FK/FR then a0S< a*.. We shall only consider FK>FR or as a limit case, FK=FR hence we have 3 cases:  

1. Case (a) FK>FR  and Kt< FK/FR  (top of Fig.6 where we see a0< a* < a0S < aS* ) 
2. Case (b) FK=FR  and Kt >FK/FR=1  (bottom of Fig.6 where we see a0=a0S< a*= aS* ) 
3. Case (c) FK>FR  but Kt >FK/FR (Fig.7 where we see a0<a0S< a*< aS*) 

In the original case of Fig.5 we recognize case (b) which is also typical for metals for high stress concentrations whereas 
also case (a) is possible since FK/FR =2-10. In any event, 5 regions can be seen in the Atzori-Lazzarin diagram. Fig.6 also 
show the construction of the generalized Wöhler curves corresponding to the key sizes (in other words, we have up to 4 
distinct Wöhler lines corresponding to the sizes a0 ,a0S, a*, aS*).  
With reference to Fig.5 (also reproduced in the details of the construction in Fig.7), the 5 regions correspond to different 
trend of the resulting slope in the (a0<a0S < a*< aS* ). In the first region, for a<a0 , k’=k remains unvaried to the value of the 
unnotched specimen. In the second region a0<a<a0S, we obtain a decrease of k’ up to a limit value, then remaining constant 

in the entire third region Sa0 <a<a*, and which we obtain easily from writing a Wohler-like power-law between the static 
strength value to the fatigue limit divided by the Kt factor,  
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If we divide the original Wöhler curve (1) by (16) term by term, we obtain  
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i.e. 
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In other words, k’ decreases from the unnotched specimen case up to a limit value (depending on Kt) given by Eq.18. 
Notice that this equation has been obtained without any need to specify N0 and N∞, except of course that these values are 
assumed to remain constant independently on the size of the notch. If a more general choice had been made, i.e. using new 
values N’0 and N’∞, and not the original N’0 and N’∞ of the Wöhler curve in Eq.1, 
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and dividing again for (1) 
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and the decrease of k’ depends now on the variation of N’0 and N’∞, as a function of the notch size, and not just on Kt. 
However, we shall neglect this possibility. 
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The limit case is when the stress concentration is high enough that Kt>FK/FR in which case the limit ratios is obtained 
between the static and the fatigue limits, and consequently from (18) 
 

   
 

  R
lim

K

k F
k

F

Log

Log
          (21) 

 
which is clearly the highest slope compatible to our criteria and the material properties ratios. The more general equation 
analogous to Eq. (20) could be obtained by using Kt>FK/FR in (20) or combining eqt(21) with Eq. (6-7), obtaining in any 
case 
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which clearly seems to link the limit generalized Wöhler slope to the Paris slope and the position of the key points in the 
Wöhler and Paris laws, as it is correct since the limit generalized Wöhler slope is indeed significant in the region where life 

would be mainly given by propagation. In fact, turning back to the standard assumptions for the key points ( th
av , c

av =10-6, 
10-2 mm/cycle and, perhaps with less generality, N∞=107 and N0=103 cycles), we re-obtain the comforting result that the 
limiting Wöhler coefficient coincides numerically with the Paris coefficient: 
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as it was obtained independently from integrating Paris’ law in (8).  
Turning back to our classification, we have finally a 4th region, where  a*<a< a*S  where the slope starts to increase again 
towards the original value, k, which then remains constant in the fifth region. This is not too hard to interpret, given that a 
very large blunt notch basically behaves as a standard specimen subject to a nominal stress Kt-times higher than the remote 
stress. In other words, we suggest that we start from the basic Wöhler curve behaviour, we move towards Paris with increasing 
notch size, but we then return to the original Wöhler behaviour again, for very large blunt notches. Notice that only the 
Wöhler curves corresponding to the key sizes are reproduced in Fig.6, whereas also some intermediate ones are included in 
Fig.7 with lighter line.  
For Case (a), FK>FR  but Kt <FK/FR  the limiting slope is not reached, and we only obtain the minimum slope as (18) or 
(20). We then decrease slope in the fourth region and return to the original one in the fifth.  
The case (b) is somehow contrived and would correspond to an abrupt transition from Wöhler towards Paris and back to 
Wöhler, the abrupt transition being particularly evident because of the schematic form of the criterion.  
 
 
WÖHLER CURVES USING EL HADDAD 
 

n the previous paragraph, we used the schematic version of the static and infinite life Atzori-Lazzarin criteria. Here, 
we shall use the El Haddad Eqs. (10) and the corresponding static case. Notice we can put these two equations in the 
form of a reduction fatigue Kf in fatigue, and the corresponding KS reduction static factor  
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Figure 6: The interpolation procedure: example case (a) FK>FR  and Kt< FK/FR  and case (b) FK=FR  and Kt>FK/FR=1. 
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Figure 7: The generalized Wohler slope as it results from an example interpolation procedure. Case (c) FK>FR  but Kt>FK/FR. 
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These two curves (or better the inverse of these two curves) are reproduced in Fig.8,9, as a function of a/a0 for some 
example cases (typical steel and typical ceramic, where FK=15.5, FR=2.4, and FK=2, FR=1.5, respectively). Since the plots 
are given as a function of a/a0, the 1/Kf curve “bends” around x=1, whereas the corresponding 1/KS curve “bends” around 
x= a0S / a0 which in fact scales with the square of the ratio FK/FR = 15.5/2.4=6.5, and FK=2/1.5=1.33, and hence a0S / 
a0=41.7 and 1.7 respectively, since a0S/a0=(FK/FR)2.  
This El Haddad form is apparently more complicated, but in fact by repeating the same reasoning of the previous paragraph, 
we only need to distinguish 2 possible ranges: for a<a*, 
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i.e. 
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This slope has a limiting value of  
 

      
 
 
 
  

  
   

 R

lim

K t

K
t

R

Fk

k

F K

F
K

F

2

2
2

Log
;

1
Log

  a=a*      (28) 

 
For a>a*, the slope increases again,  
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and finally we return to the original slope k, for a>as*.  
The resulting slopes are also indicated as ratio k’/k<1 in the Fig.8,9 for 3 example stress concentration factors Kt=2,5,10, 
showing how for steel the generalized Wöhler slope is already about 60% of the original one for notches slightly larger than 
a0 and with stress concentration factor only of about 2. The slope continues to decrease to about 40% when the notch is 
now significantly larger than a0 (specifically about 20 times larger than a0) and recollecting Eq. 6,2 for the estimate of the 
Paris and Wöhler slopes, respectively, we have about m=3.4, k=10.5 with the conclusion that the limit reduction of the 
generalized Wöhler slope is k’/k =32%, and hence with a stress concentration factor of about 5 we’re already very close to 
the limit slope.  
For the case of ceramic material in Fig.9, the estimates with eqts. 6,2 give m=13.3 and k=22.7 with the conclusion that the 
limit reduction of the generalized Wöhler slope is 59%. However, with the same concentration factors as the previous cases, 
i.e. Kt=2,5,10 we obtain that the decrease of the slope is already almost complete with a notch of the order of 2a0 and with 
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the smallest Kt=2. In this respect, the brittle ceramic material is more sensitive to small notches, and this is not entirely a 
surprise. 
 

 
 

Figure 8: The generalized Wohler slope as it results from an interpolation procedure using the El Haddad equation for both the static 
and the fatigue criteria, and for typical material constant ratios of steels.  
 

 
 

Figure 9: The generalized Wohler slope as it results from an interpolation procedure using the El Haddad equation for both the static 
and the fatigue criteria, and for typical material constant ratios of steels.  

 
 

CONCLUSIONS 
 

ften design is a process which starts from preliminary calculations, with limited degrees of knowledge of materials 
and their properties.  In fact this is not always only a limit of preliminary design stages, since there is never enough 
knowledge in fatigue of a material, except when a real prototype test is conducted, which in fact is the case for 

some industries, despite the larger cost of such a test with respect to analytical or numerical “virtual” testing procedures. 
This paper assumes that the basic Wöhler curve of the unnotched material is known, as well as the basic Paris law of the 
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cracked material. We then proceed to illustrate, from the Atzori and Lazzarin criteria [5, 16], some simple estimates for the 
generic Wöhler curve of notched specimen.  
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