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ABSTRACT. Joint theoretical and experimental investigations have allowed to realize an approach with use of 
mathematical and physical modeling of processes of a shock wave loading of powder materials. 
In order to gain a better insight into the effect of loading conditions and, in particular, to study the effect of 
detonation velocity, explosive thickness, and explosion pressure on the properties of the final sample, we 
numerically solved the problem about powder compaction in the axisymmetric case. 
The performed analysis shows that an increase in the decay time of the pressure applied to the sample due to an 
increase of the explosive thickness or the external loading causes no shrinkage of the destructed region at a 
fixed propagation velocity of the detonation wave. Simultaneously, a decrease in the propagation velocity of the 
detonation wave results in an appreciable shrinkage of this region. 
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INTRODUCTION 
 

ethods of explosive loading of powder materials in conservation ampoules are applied in order to obtain new 
materials including composite ones with the unique physical and mechanical properties. In addition, these 
methods can be used to study phase transitions occurring in materials at high pressures and temperatures taking 

place behind shock waves, as well as for the synthesis of metastable phases. 
In recent decades, significant development has been achieved in such a scientific and technical branch of materials science 
as powder metallurgy. This term is currently understood a whole complex of problems connected with the design of 
materials and products from metal and nonmetal powders. Interest in these problems is quite understandable since the 
opportunity to create new classes of materials with unique and controllable properties which can not be obtained by 
ordinary metallurgy methods has arisen. 
A special place in the powder metallurgy is occupied by explosive compaction of powder materials. It is easy to explain 
the strong interest in the explosive compaction. It consists in the fact that virtually all the methods of composite materials' 
production from powder mixtures lead to a change in initial material properties due to high temperatures and relatively 
long duration of the process. 
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Since the powders being in the form of granules, fibers, needles and ribbons, possessing the necessary properties in the 
initial state, can not be used directly to produce semi-finished products or components, the methods of compaction of 
these materials perform two tasks at once. On the one hand the compaction changes the shape and size of the powders, 
and on the other hand it produces the material itself. From this point of view, the short exposure to high temperatures 
and pressures during explosive compaction allows, in general, to keep the original structure and properties of the 
components. At the same time, varying of the intensity and time exposure to high pressure and temperature in shock 
compression allows to modify, if necessary, the structure and properties of the compacts a controlled manner. 
The loading of the powder materials in the conservation ampoules can be carried out by means of both plane and oblique 
shock waves. Each of the methods has its pros and cons. The explosive loading by oblique shock wave is characterized by 
high values of shear strain, in comparison with the plane impact, which leads to stronger bonds between the compacted 
particles. In addition, this scheme allows to obtain the compacts not only in the form of plates, but pipes, rods, cones, etc 
as well. One can also get the compacts of large sizes. The loading by plane shock waves allow to vary the pressure and 
temperature behind the shock front in a wider range and to reach much higher values of these parameters. At the same 
time, the method is more material-consuming and has limitations on the size of the loaded samples. 
Investigation into the interaction between oblique shock waves in porous materials and powders is a topical problem in 
optimization of loading conditions for obtaining, from a given sample, a compacted material with spatially uniform 
physical and mechanical properties. In compacting a powder in the cylindrical scheme, an irregular interaction between 
shock waves occurs. The compacted powder displays substantial non-uniformity in particle displacements, resulting in 
inhomogeneity of powder characteristics and, in some cases, even in material failure. 
In compacting porous material and powders, the strong bonding between particles is achieved through the combined 
pressure-shear loading. During the compacting, a substantial energy is released at the interfaces between powder particles, 
resulting in surface cleaning and material melting in narrow interfacial regions. As a result, pore collapsing, giving rise to 
strong bonding between particles, occurs. Below, this phenomenon is termed compaction. 
V.F. Nesterenko proposed the following criterion for the formation of a strong compact: 
 

 > 2 VP H            (1) 
 

where, according to [1], 3V sH Y . Following [1], we can write criterion (1), deduced from experimental data, as 
 

> 6 sP Y            (2) 
 

In turn, R. Prummer [2] uses the following condition for obtaining a uniform, in its physical properties, cylindrical 
compact with no Mach reflection induced singularities at its center:  VP H , where P  is the detonation pressure. 

Comparing condition (1) with the condition  VP H , Nesterenko [1] arrives at a conclusion that it is impossible in 
principle, without a central rod, to obtain a spatially uniform compact in the cylindrical loading scheme since the shock 
pressure required for obtaining a dense compact (2) will always lead to Mach reflection at the center of the sample. 
Another important problem is preservation of the finish compact after loading. With the arrival of unloading waves, there 
arises a tensile stress that results in partial or complete destruction of the sample. We assume that the sample undergoes 
mechanical failure if the maximum tensile stress max  reaches a certain critical value * . In line with the adopted 
hypothesis, the following condition for the sample failure should be assumed:  

 

*>max             (3) 
 

where max  is the highest stress among the principal stresses for the strained state under study and *  is the critical 
stress. 
In the present work, the critical stress *  is estimated as  

 

* 1= (2 / 3) (1/ )sY ln m  
 

where 1m  is the residual porosity. Taking the finish-compact density to equal 99%, we obtain 1 = 0.01m  and * 3  sY . 
For the principal stresses, we have:  
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3 =     

 
 
EXPERIMENTAL STUDY OF THE COMPACT STRUCTURE 
 

xperiments on the explosive compaction have been conducted by a cylindrical scheme without a central rod. The 
powder has consisted of particles of nearly spherical shape and with size of 145-310 µm (Fig. 1). Bulk density of 
the powder has been in all experiments for copper equal to  -5.0 ± 0.05 g/cm3, for aluminum  -1.4 g/cm3. 

The experimental arrangement is shown in Fig. 2. 
 

 
 

 
Figure1: Initial cooper powder. 

 
Figure 2: Scheme of explosive compaction: 1 – detonator, 2 –
explosive charge, 3 – steel plugs, 4 – container (steel tube 12 mm 
in diameter), 5 – copper powder, 6 – momentum trap. 

 
Explosive compaction occurs under the action of the detonation products of the contact explosive charges. For varying of 
the detonation velocity the charges were made from ammonite, RDX and mixture of ammonite with RDX in different 
proportions. The detonation velocity (D) was measured by electrical contact technique, and ranged from 3.19 to 5.26 
km/s. Container wall was thin compared to the thickness of explosive layer and diameter of the powder sample. Structure 
of compacts cross-sections were studied using an optical microscope NEOPHOT. 
In Fig. 3 the structures of the cross sections near the axis of the samples is shown for three different values of detonation 
velocity (3.19, 3.95 and 5.26 km/s) and at the same thickness of explosive charge – 5 mm. 
 

  
(a) (b) (c) 

 

Figure 3: The structures of the cross sections of the samples for three different values of D and at the same thickness of explosive 
charge – 5 mm: a) D=3.19 km/s; b) D=3.95 km/s; c) D=5.26 km/s. 
 
It can be noted that with the increase of the detonation velocity, and hence the shock pressure, a compacts structures 
change. At minimum value of D compact is homogeneous. Then, in the center due to the irregular reflection of the 
converging shock wave a zone of melt appear. And at D=5.26 km/s in the compact the radial cracks arise. A further 
increase in D can lead to the destruction of the container. To investigate the effect of the thickness of the explosive charge 
on the crack formation, an experiment was conducted in which the thickness of the charge was increased to 10 mm, and 
the detonation velocity was 5.17 km/s. The structure of this compact is shown in Fig. 4. 
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Figure 4: The structures of the cross section of the sample loaded at D=5.12 km/s and thickness of the explosive charge 10 mm. 
 
Comparing structures from Fig. 3а and Fig. 4, it is visible, that in spite of approximately identical detonation regimes, in a 
compact in Fig. 4 cracks are absent.  
 
 
NUMERICAL SIMULATION OF THE EXPLOSIVE LOADING 
 

n order to gain a better insight into the effect of loading conditions and, in particular, to study the effect of detonation 
velocity, explosive thickness, and explosion pressure on the properties of the final sample, we numerically solved the 
problem about powder compaction in the axisymmetric case using conditions of above mentioned experiments. 

The problem statement according to experimental scheme is clear from Fig. 5. 
 

D
P

powder

explosive
Y

X  
Figure 5: The problem statement. 

 
We solved the full system of equations governing the deformation of a porous elastic-plastic material [3]. The action of 
the explosion products on the sample was modeled with a pressure applied to the upper border of the sample. The 
pressure was calculated by the approximation formula for the pressure upon unrestricted dispersion of detonation 
products [4]:  

 

 1 1

3( 1)
( )= exp( ( / )/ ), =

4( 1)
e e

H
e

P t P t x D t t
D

 



 


 

 

Here e  is the explosive thickness and  e  is the adiabatic exponent of the detonation products. Since the problem is 
symmetric, a half of the experimental assembly is considered. 
The symmetry axis is the axis of the container with the powder. On the symmetry axis rigid wall boundary conditions are 
set. The right boundary is considered to be free of stress, and at the left boundary condition of a rigid wall is put. 
Computation of the contact boundaries is performed by using a symmetric algorithm [5]. The calculations are carried out 
by the M.L. Wilkins scheme [6]. The shock wave propagates from left to right. Geometric dimensions and values of the 
physical parameters correspond to the experimental data mentioned above. In this paper a few-parametric equation of 
state is applied [7], which has allowed to simulate shock-wave processes with a minimal number of physical parameters as 
the initial data. 
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or, in terms of free energy 
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where xP  and xE  - pressure and specific internal energy of the zero isotherm, T  - temperature, , ,v v l v ec c c   - heat 

capacity at constant volume, ( )V  - the Debye temperature. 
The equation of state presented here is based on the dependence of the Gruneisen coefficient γ on the volume [8] 
 

0( ) 2 / 3 2 /(1 / )V aV V     
 

,01 2 / ( 2 ) 2 /s t sa P K      
 

where 0 /s s vK V c  , sK  - adiabatic bulk modulus,   -oefficient of thermal expansion, ,0tP  - heat pressure under the 

normal conditions. 

To find the elastic curves a generalized model describing the Gruneisen coefficient  V  is used: 
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at 0t   the equation corresponds to the Landau and Slater theory [8, 9], at 1t   it corresponds to the Dugdale and 
MacDonald hypothesis [10], and at 2t   to the theory of free volume [11]. 
In the physics of shock waves a method of calculating the pressure at the Hugoniot adiabat of the porous material by 
pressure on the “reference” Hugoniot adiabat of monolithic material [12] is known: 
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Here V  is the specific volume of the Hugoniot adiabats, 0V and 00V  are specific volumes of monolithic and porous 
materials , respectively, at the normal initial conditions. 

 
 

CALCULATION RESULTS AND DISCUSSION 
 

Ig. 6, a and b shows the pressure isolines for the cases of planar and cylindrical symmetries with identical loading 
conditions. It is seen from Fig. 6 that, in the planar statement of the problem, a regular reflection of the incident 
shock wave takes place. In the case of the cylindrical loading scheme, the incident shock waves bends as it 

approaches the cylinder axis, and, under the same loading conditions, an irregular reflection occurs. 
Fig. 7a shows the pressure profile near the symmetry axis for the cases of planar and cylindrical statements (solid and 
dashed curves, respectively). An appreciable pressure rise near the symmetry axis is observed in the case of cylindrical 
configuration compared to the planar problem due to the divergence of the shock wave to the axis. 
Fig. 7b shows the profile of the longitudinal velocity xu  across the sample under loading behind the shock front. The 

solid and dashed lines show the data for the planar and axisymmetric problem statements, respectively. It is clearly seen 
that the velocity in the cylindrical case is much greater than in the planar variant. 
As stated above, an important problem is preservation of finish compact, i.e., preventing its mechanical failure and 
obtaining a sample with uniform properties. Using criterion (3), we can find the interface between the solid and distructed 
materials. The regions of the compacted and porous materials for various explosive thicknesses for the external pressures 
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= 0.05P  Mbar and = 0.075P  Mbar are shown in Fig. 8, a and  b, respectively. In these calculations, the detonation 
velocity was = 5D  km/s. The solid, dashed, and dot-and-dash lines outline the destruction regions for the explosive 
thicknesses  = 2e  cm, = 3e  cm, and = 5e  cm, respectively. Region 1 is the compacted region, and Region 2, the 
destruction region. An analysis of these graphs shows that an increase in the explosive thickness and, hence, an increase of 
the loading decay time does not cause any substantial shrinkage of the destruction region. 
 

X, cm

Y
,c

m

12 13 14

0..5

1

X, cm

Y
,c

m

10 11 12 13 14 15
0

0..5

1

1..5

а)

b)

 

155 10

a)

b)

P, Mbar

X, cm

Ux, cm/msec

0.35

0.25

0.15

0.05

- 0.05

0.0

0.2

0.8

0.6

0.4

0.140.06 0.08 0.120.10.040.02

Y, cm

 
Figure 6: Pressure isolines: a) planar geometry; b) cylindrical 
configuration. 

Figure 7: Pressure profile (a) and longitudinal-velocity profile 
( )xu y  (b) for the planar and cylindrical geometries (solid 

and dashed lines, respectively). 
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Figure 8: Compacted and destruction regions for various explosive thicknesses under external pressures = 0.05P  Mbar (a) and 
= 0.075P  Mbar (b). The detonation velocity is = 5D  km/s. The solid, dashed, and dot-and-dash lines refer to the explosive 

thicknesses = 2e  cm, = 3e cm, and = 5e cm, respectively. The compacted and destruction regions are indicated by 1 and 2. 

 
It should be emphasized that this conclusion is valid for criterion (3). In derivation of (3), it was implicitly assumed that 
the interfacial melted zones are narrow, and the material in these zone rapidly solidifies as the particles in the bulk of the 
material undergo cooling. If this condition does not hold, then there can be a situation in which, by the moment of arrival 
of the unloading wave, the material in the interfacial zones still remains melted, which will prevent compaction. In this 
case, the dimensions of the destruction region will be dependent on the loading decay time and on the explosive thickness. 
The explosive thickness should be large enough to prevent shock wave damping in the powder and to enable complete 
pore collapsing in the sample. Fig. 9, a and b shows the density isolines for the explosive thickness = 0.5e  cm and the 
external pressure = 0.05P  Mbar. Parts a and b of Fig. 9 depict the data for the axisymmetric and planar problem 
statements. Damping of the incident shock wave is evident from the figure. This results in incomplete powder 
compaction; the latter is clear from Fig. 10, which shows the distribution of porosity 1m  across the sample. The solid and 
dashed lines in this figure correspond to the planar case and to the cylindrical configuration, respectively. An analysis of 
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these graphs shows that, in the axisymmetric case, due to the wave divergence to the axis, the pores undergo collapsing in 
a larger volume than in the planar variant. 
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Figure 9: Density isolines for = 0.5e  cm: а) cylindrical 
configuration; b) planar statement. 

Figure 10: Porosity 1m  for = 0.5e  cm: solid line is planar 
statement; dashed line is cylindrical configuration. 

 
A twofold increase in the explosive thickness makes the decay of the incidence shock wave less intensive. The density 
isolines for the explosive thickness =1e  cm and the external pressure = 0.05P  Mbar are shown in Fig. 11, a and b. 
Parts a and b of this figure shows the calculation data for the axisymmetric and planar statements, respectively. It is clearly 
seen that in the case of cylindrical symmetry the shock wave bends near the axis, giving rise to an irregular reflection; in 
the planar configuration, a regular interaction occurs. Fig. 12, which depicts the distribution of porosity 1m  across the 
sample compacted in the cylindrical geometry (the dashed line in Fig. 12), is indicative of complete collapsing of pores 
over the entire thickness of the sample. In the planar case (see the dashed line in Fig. 12), the complete collapsing of pores 
is observed approximately over half the thickness of the sample, and the porosity near the symmetry axis is close to the 
initial one, 0

1m . 
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Figure 11: Density isolines for = 1e  cm: a) cylindrical 
configuration; b) planar configuration. 
 

Figure 12: Porosity 1m  for = 1e  cm: solid line - planar 
statement; dashed line - cylindrical configuration. 

The density isolines for the explosive thickness = 2e  cm are shown in Fig. 13, a and b. The external pressure was taken 
to be = 0.05P  Mbar. Parts a and b of this figure show the calculation data for the axisymmetric and planar statements. In 
the cylindrical case (see Fig. 13, a), an irregular reflection is clearly observed, whereas in the planar case (see Fig. 13, b) the 
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incident shock wave interacts with the rigid wall in the regular manner. In both cases, all pores in the sample collapse 
completely. 
Further calculations were carried out for the explosive thicknesses = 2e  cm, = 3e  cm and = 5e  cm. 
Fig. 14, a and b illustrates the effect of applied pressure on the thickness of the destruction region. In the calculations, the 
external pressures were = 0.05P  Mbar and  = 0.075P  Mbar, respectively, and the detonation velocity in both cases was 

= 7D  km/s. The solid and dashed lines show the data for the explosive thicknesses = 3e  cm and = 5e  cm. Regions  1 
and 2 are the compacted and destruction regions. As is seen from the figure, an increase in the external load causes no 
shrinkage of the destruction zone. Thus, it can be concluded that an increase in the decay time of the pressure applied to 
the sample resulting from an increase in the explosive thickness or in the value of the external load does not make the 
destruction zone shrink at a fixed propagation velocity of the detonation wave. 
 

X, cm

Y
, c

m

0.5
1

1.5

X, cm

Y
, c

m

2

0.5
1

1.5

а)

b)

864

2 864

 

 

X, cm
Y

,c
m

1

2

X, cm

Y
,c

m

1

2 2 1
b)

2 1
а)

1 9753

1 9753
 

 

Figure 13: Density isolines for = 2e  cm: a) cylindrical 
configuration; b) planar statement. 

Figure 14: Compacted and destructed regions for two values 
of external pressure, = 0.05P  Mbar (a) and = 0.075P  Mbar 
(b). The detonation velocity is  = 7D  km/s. The solid and 
dashed lines show the calculation data for the explosive 
thicknesses = 3e  cm and = 5e  cm. 

 
As shown by above mentioned experiments an increase of the velocity of the detonation wave results in a considerable 
shrinkage of the destruction region. Fig. 15 show the compacted (1) and destructed (2) regions in the sample for the 
detonation velocities = 3D , 5, 7 km/s at a fixed explosive thickness = 5e  cm and at a fixed external pressure = 0.05P  
Mbar. The solid, dashed, and dot-and-dash lines show the calculation data for the detonation velocities = 3D  km/s, 

= 5D  km/s, and = 7D  km/s. 
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Figure 15: Compacted (1) and destructed (2) regions for three values of the detonation velocity. The solid, dashed, and dot-and-dash 
lines refer to = 3D  km/s, = 5D  km/s, and = 7D  km/s. 

 
The isolines of pressure for the indicated loading parameters are shown in Fig. 16, a-c. It is seen from the graphs that, as 
the shock-wave propagation velocity increases, the angle of incidence decreases and the reflected shock causes material 
destruction (see Fig. 16, b and c). As the velocity of the detonation wave increases, the angle of incidence of the incident 
shock wave increases and, as it is seen from Fig. 16, a, at the velocity = 3D  km/s the incident shock wave is close to the 
normal shock and the amplitude of the reflection wave is almost zero. 
Since in the case of cylindrical symmetry no regular reflection occurs, the final sample turns out to be inhomogeneous. 
Fig. 17 shows the distribution of the longitudinal velocity xu  (Fig. 17, a) and temperature T  (fig. 16, b) across the sample 
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in the compacted region for the detonation velocity = 5D  km/s. An appreciable non-uniformity in the distribution of 
parameters is evident from the graphs. Near the axis, both the velocity and temperature are greater than in the region 
some distance away from it. 
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Figure 16: Pressure isolines: a) detonation velocity = 7D  km/s; b) detonation velocity = 5D  km/s; c) detonation velocity 

= 3D  km/s. 
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Figure 17: Predicted distributions of the longitudinal velocity xu  (a) and temperature T  (b) across the compacted region of the 
sample for the detonation velocity = 5D  km/s. 

 
Parts a and b of Fig. 18 show the distributions of the longitudinal velocity xu  and temperature T  across the compacted 
region of the sample predicted for the detonation velocity = 3D  km/s. Here, under identical loading parameters, the final 
sample is quire homogeneous. 
As a result, it becomes possible to obtain spatially uniform compacted samples. The necessary condition for this is 
sufficiently low detonation velocity, equal, for the aluminum powder, to 0.3 cm/ m sec. Here, on the one hand, 
compaction condition (1) should be fulfilled and, on the other, the uniformity of loading parameters across the sample 
should be ensured. 
Thus, the compaction of powders with low detonation velocities results in a considerable shrinkage of destruction zones 
in finish samples and in spatial uniformity of material parameters in their compacted parts. 
The performed analysis shows that an increase in the decay time of the pressure applied to the sample due to an increase 
of the explosive thickness or the external loading causes no shrinkage of the destructed region at a fixed propagation 
velocity of the detonation wave. Simultaneously, a decrease in the propagation velocity of the detonation wave results in 
an appreciable shrinkage of this region. 
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Figure 18: Distributions of the longitudinal velocity xu  (a) and temperature T  (b) across the compacted region of the sample for the 
detonation velocity = 3D  km/s. 

 
 

CONCLUSIONS 
 

oint theoretical and experimental studies have allowed to implement an approach that uses mathematical and physical 
simulation of shock-wave loading of powdered materials. A numerical simulation of shock wave propagation and 
deformation of the experimental assembly has been performed. 

The temperature distributions over the sample thickness in the compacted zone for several values of detonation velocity 
show that at higher speeds there is considerable heterogeneity in the temperature distribution over the sample thickness. 
Near the axis of the sample the temperature has a higher value than in distance from it. 
An increase in the pressure decay time due to increasing either the explosive thickness or the external loading intensity 
causes no shrinkage of the destruction zone at a fixed propagation velocity of the detonation wave. Compaction of 
powders with low detonation velocities results in a considerable shrinkage of destruction zones in finish samples and in a 
uniform distribution of material parameters in the compacted region. 
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