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ABSTRACT. In this work, a link between the averaged strain energy density (SED) approach and the peak stress 
method in the case of cracks subjected to mixed mode (I+II) loading has been investigated. Some closed-form 
expressions of the strain energy density, averaged in a volume of radius R0, as function of the Stress Intensity 
Factors are provided for plane strain conditions under mixed mode I+II loadings, the material being thought of 
as isotropic and linear elastic.  
On the basis of the peak stress method (PSM) some expressions useful to estimate the mode I and mode II 
stress intensity factors (SIFs) have been recently derived. These relationships take advantage of the elastic peak 
stresses from FE analyses carried out by using a given mesh pattern where the element size and type are kept 
constants. The evaluation of the SIFs from a numerical analysis of the local stress field usually requires very 
refined meshes and then large computational effort. The usefulness of the PSM-based expressions is that (i) 
only the elastic peak stresses numerically evaluated at the crack tip are needed and not a set of stress–distance 
data; (ii) the employed meshes are rather coarse if compared to those necessary for the evaluation of the whole 
local stress field.  
By substituting the PSM-based relationships in the closed-form expressions of the averaged SED it appears that 
the latter can be directly estimated by means of the elastic peak stresses evaluated at the crack tip.  
Several FE analyses have been carried out on cracked plates subjected to tension loading considering different 
geometrical combinations, varying the length 2a and the inclination ϕ of the crack (i.e. the mode mixity) as well 
as the size d of the adopted finite elements, with the aim to evaluate the local SED and the elastic peak stress 
components σpeak and τpeak. In all cases the numerical values of the SED derived from the FE analyses have been 
compared with those analytically obtained by using the expressions for the SED based on the elastic peak 
stresses, in order to verify the range of applicability of the proposed relationships.  
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INTRODUCTION 
 

otch stress intensity factors (NSIFs) play an important role in static strength assessments of components made 
of brittle or quasi-brittle materials and weakened by sharp V-shaped notches [1]. This holds true also for 
components made of structural materials undergoing high cycle fatigue loading [2] as well as for welded joints 

[3, 4]. In plane problems, the mode I and mode II NSIFs for sharp V-notches, which quantify the intensity of the 
asymptotic stress distributions in the close neighbourhood of the notch tip, can be expressed by means of the Gross and 
Mendelson’s definitions [5]: 
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Figure 1: (a) Polar coordinate system centred at the notch tip. (b) Control volume (area) of radius R0 surrounding the V-notch tip. 
 
where (r,θ) is a polar coordinate system centred at the notch tip (Fig. 1a), σθθ and τrθ are the stress components according 
to the coordinate system and λ1 and λ2 are respectively the mode I and mode II first eigenvalues in William’s equations [6]. 
The condition θ = 0 characterizes all points of the notch bisector line. When the V-notch angle 2α is equal to zero, λ1 and 
λ2 equal 0.5 and K1 and K2 match the conventional stress intensity factors of a crack, KI and KII, according to the Linear 
Elastic Fracture Mechanics (LEFM). 
The main practical disadvantage in the application of the NSIF-based approach is that very refined meshes are needed to 
calculate the NSIFs by means of definitions (1) and (2). The modelling procedure becomes particularly time-consuming 
for components that cannot be analysed by means of two-dimensional models.  
Recently, Nisitani and Teranishi [7, 8] presented a new numerical procedure suitable for estimating KI for a crack 
emanating from an ellipsoidal cavity. Such a procedure is based on the usefulness of the linear elastic stress σpeak calculated 
at the crack tip by means of FE analyses characterized by a mesh pattern having a constant element size and type. In 
particular Nisitani and Teranishi [7, 8] were able to show that the ratio KI/σpeak depends only on the element size for a 
given element type, so that the σpeak value can be used to rapidly estimate KI, provided that the adopted mesh pattern has 
been previously calibrated on geometries for which the exact value of KI is known. This approach has been theoretically 
justified and extended also to sharp V-shaped notches subject to mode I loading [9] giving rise to the so-called Peak Stress 
Method (PSM), which can be regarded as an approximate FE-based method to estimate the NSIFs. Later on, the PSM has 
been extended to cracks subjected to mode I as well as mode II stresses [10]. The element size required to evaluate K1 and 
K2 from σpeak and τpeak, respectively, is several orders of magnitude greater than that required to directly evaluate the local 
stress field. The second advantage of the use of σpeak and τpeak is that only a single stress value is sufficient to estimate K1 
and K2, respectively, instead of a number of stress-distance FE data, as usually made by applying definitions (1) and (2).  
Since the units of the mode I and mode II NSIFs, K1 and K2, depend on the notch opening angle, generally a direct 
comparison of the NSIF values cannot be performed. This problem was overcome by Lazzarin and Zambardi [11], who 
proposed to use the total elastic strain energy density (SED) averaged over a sector of radius R0 (Fig. 1b) for static [11-14] 
and fatigue [11,15,16] strength assessments. With reference to plane strain conditions, the SED value can be evaluated as 
follows: 
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where e1 and e2 [11] are two parameters which depend on the notch opening angle 2α and the Poisson’s ratio ν. In 
principle, Eq. (3) is valid when the influence of higher order, non-singular terms can be neglected inside the control 
volume. In the case of short cracks or thin welded lap joints, for example, the T-stress must be included in the local SED 
evaluation [17].  
Aims of the present contribution are as follows:  
 to recall the fundamental concepts of the PSM for pure modes of loading; 
 to present the extension of the PSM to the case of mixed mode (I+II) loading; 
 to investigate a link between the SED approach and the PSM in the case of mixed mode (I+II) loading.  
 
 
THE PEAK STRESS METHOD FOR PURE MODES OF LOADING 
 

he Peak Stress Method (PSM) is a simplified numerical method to estimate the NSIFs parameters. Originally it 
was formulated for cases where only mode I singular stresses exists (i.e. K2 = 0 or mode II stresses are negligible).  
It has been based on a link between the exact value of mode I NSIF K1, see Eq. (1), and the linear elastic opening 

peak stress σpeak calculated at the V-notch tip according to the following expression [9]: 
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The PSM according to Eq. (4) was applied to correlate the fatigue strength of fillet- and full penetration welded joints 
subjected to mode I loading [18,19]. 
Recently the Peak Stress Method has been extended also to mode II crack problems, linking the exact value of mode II 
NSIF K2, see Eq. (2) with 2 = 0° and 2 = 0.5, and the linear elastic sliding peak stress τpeak calculated at the crack tip 
according to the following expression [10]: 
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In previous expressions d is the mean finite element size adopted when using the free mesh generation algorithm available 
in Ansys numerical code, while “exact NSIF values” must be meant as the values obtained using very refined FE mesh 
patterns in the numerical analyses and applying definitions (1) and (2) to the numerical results. Eqs. (4) and (5) are useful 
in practical applications because if the mean element size d is kept constant, then also K1/σpeak and K2/τpeak ratios are 
constant. Eqs. (4) and (5) are valid under the following conditions: 
 use of 4-node linear quadrilateral elements, as implemented in ANSYS® numerical code (PLANE 42 of Ansys 

element library or alternatively PLANE 182 with K-option 1 set to 3); 
 the pattern of finite elements around the V-notch tip must be that shown in Fig. 2b (see also [9, 10]); in particular, 

four elements share the node located at the crack tip; 
 concerning Eq. (4), V-notches characterised by an opening angle 2 ranging from 0° to 135°; 

 the ratio a/d must be greater than 3 in order to obtain %338.1* FEK , being a the semi-crack length (or the notch 
depth when dealing with open V-notches). When mode II (sliding) stresses are of interest, meshes must be more 

refined such that the ratio a/d must be greater than 14 in order to obtain %338.3** FEK . 
 
 
THE PEAK STRESS METHOD FOR MIXED MODE (I+II) LOADING 
 

n the present paragraph the Peak Stress Method is extended to mixed mode (I+II) crack problems. Consider a crack 
(2α = 0°) centred in a plate having the geometry reported in Fig. 2a and subjected to tensile loading. By varying the 
inclination angle ϕ of the crack it is possible to obtain different mode mixities, from pure mode I (ϕ = 0°) to mixed 

mode I+II (ϕ > 0°) loading. Different geometrical combinations have been considered, varying the projected crack length 
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2h (from 5 to 80 mm) and the inclination ϕ (from 0° to 60°) as well as the size of the element d, with the aim to 
investigate to which extent the PSM holds true. Finite element analyses have been performed by using the commercial 
code Ansys® and 4-node quadrilateral element (PLANE 42). The free mesh algorithm has been used in all numerical 
analyses and the sole  control parameter set to generate the mesh has been the so-called ‘global element size’, i.e. the mean 
element size of the finite elements, which ranged from 0.5 mm to 10 mm. With the purpose of obtaining the pattern of 
finite elements oriented along the crack bisector line (see Fig. 2b), the geometry of the plate has been divided into six 
areas, such that each crack tip is shared by four areas, as shown in Fig 2a. By so doing four elements (each one belonging 
to a different area) share the node located at the crack tip. 
For the considered case, K1 = KI, K2 = KII, λ1 = λ2 = 0.5, while σpeak and τpeak represent the maximum elastic normal and 
tangential stress referred to the bisector line and evaluated at the crack tip according to Fig. 2a. The exact values of the 
mode I and mode II SIF, KI and KII, have been evaluated by means of further finite element analyses performed on the 
same geometries, but adopting very refined meshes (size of the smallest element of the order of 10-5 mm) in the close 
neighbourhood of the crack tip. 
Figs. 3-4 plot the results of the numerical analyses in terms of the non-dimensional parameters K*FE and K**FE defined in 
Eqs. (4) and (5). For the sake of brevity, only the results for the cases ϕ = 30° and 60° have been reported. From Figs. 3-4, 
K*FE and K**FE are seen to converge to the previously calibrated values, that is 1.38 [9] and 3.38 [10], respectively, within a 
scatter band of the numerical results of ±3% also in the case of mixed mode (I+II) loading.  
This occurs for a ratio a/d greater than a value between 3 and 4, for mode I loading, and between 14 and 16, for mode II 
loading. It can be observed that the minimum a/d ratios to assure the validity of PSM under mixed mode (I+II) loading 
confirm the results obtained in [9], in the case of pure mode I (a/d  3), and the results reported in [10] with reference to 
pure mode II (a/d  14). Furthermore, as highlighted in [10], it should be noted that the mode II loading is more critical 
to analyse with the PSM than the mode I loading because the former requires more refined finite element patterns.  
 

 
                                                      (a)                                                                   (b) 
 

Figure 2: (a) Geometry and loading condition of the analysed mixed mode crack problem. 2W = 200 mm. (b) Pattern of finite 
elements around the singularity point: four elements share the node located at the crack tip. 
 
 
A LINK BETWEEN THE PEAK STRESSES AND THE AVERAGED VALUE OF THE LOCAL STRAIN ENERGY 

DENSITY  
 

n the present paragraph, a link between the averaged SED [11,12] and the peak stresses [9,10] in the case of cracks 
subjected to mixed mode (I+II) loading is investigated. By substituting the PSM-based relationships, Eqs. (4) and (5), 
in the closed-form expression of the averaged SED, Eq. (3), it appears that the latter can be directly estimated by 

means of the elastic peak stresses evaluated at the crack tip, σpeak and τpeak: 
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Several FE analyses have been carried out on the same cracked plates taken into consideration in the previous paragraph, 
with the aim to evaluate the local SED averaged over a control volume centred at the crack tip. Different geometrical 
combinations have been considered, varying the length 2a and the inclination ϕ of the crack (i.e. the mode mixity), while 
the radius of the control volume R0 has been kept constant and equal to 0.1 mm. 

 

 
 

Figure 3: Calibration of the PSM approach for a crack (2α = 0°) under mixed mode (I+II) loading (ϕ = 30°). Normalized SIF related 
to (a) mode I and (b) mode II. 
 
 
The mode mixity ratio (MM) has been evaluated according to the following definition: 
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Eq. (7) provides as master cases MM = 0 for pure mode I with ϕ = 0°, MM = 0.5 for mixed mode with ϕ = 45° and MM 
= 1 for pure mode II loading. 
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In all cases the numerical values of the SED calculated from the FE analyses have been compared with those analytically 
obtained by using the expressions for the SED based on the elastic peak stresses, Eq. (6), in order to verify the range of 
applicability of the proposed method.  
 

 

 
 

Figure 4: Calibration of the PSM approach for a crack (2α = 0°) under mixed mode (I+II) loading (ϕ = 60°). Normalized SIF related 
to (a) mode I and (b) mode II. 
 
Being available the exact values of the SIFs, the mean value of the SED has been evaluated also according to Eq. (3). In 
particular the maximum difference between the SED parameter evaluated analytically (Eq. (3)) and numerically (by FEM) 
results to be about 5%, which means that the influence of higher order terms, as the T-stress, can be neglected in these 
cases, at least from an engineering point of view. 
The ratio between the SED based on the elastic peak stresses (Eq. 6, PSMW ) and the SED calculated from the FE analyses 

( FEMW ) has been reported in Fig. 5, with reference to an inclination ϕ of the crack equal to 0°, 30° and 60°.  

From Fig. 5, it can be observed that the ratio FEMPSM WW /  converges to unity, within a scatter band of ±10% for all 
different mode mixities taken into consideration. This occurs for a ratio a/d greater than a value equal to 3 for the case 
MM = 0 (ϕ = 0°), 8.50 for MM = 0.37 (ϕ = 30°) and 16 for MM = 0.63 (ϕ = 60°). In particular the minimum a/d ratio to 
assure the validity of the proposed method increases as the mode II loading becomes dominant, that is increasing the 
mode mixity ratio (MM) defined by Eq. (7). This confirms the behavior observed in the previous paragraph and in [10], 
with reference to K*FE and K**FE. 
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Figure 5: Ratio between the SED based on the elastic peak stresses (WPSM) and the SED derived from the FE analyses (WFE) for a 
crack (2α = 0°) under mixed mode (I+II) loading: (a) ϕ = 0° (MM = 0), (b) ϕ = 30° (MM = 0.37) and (c) ϕ = 60° (MM = 0.63). 
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CONCLUSIONS 
 

n the present contribution, a link between the averaged SED approach and the peak stress method in the case of 
cracks subjected to mixed mode (I+II) loading has been investigated: 

 On the basis of the peak stress method, some expressions useful to estimate the mode I and mode II SIFs, 
recently derived for pure modes of loading, have been verified also in the case of mixed mode (I+II) crack 
problems, considering different mode mixities. 

 Since the normal and tangential peak stresses are proportional to the mode I and mode II SIFs, a link can 
immediately be established with the SED parameter by means of Eqs. (3), (4) and (5). By substituting the PSM-
based relationships in the closed-form expressions of the averaged SED it appears that the latter can be directly 
estimated by means of the elastic peak stresses evaluated at the crack tip. 

 The ratio between the SED based on the elastic peak stresses and the SED derived from the FE analyses 
converge to a unit value for a ratio a/d greater than a value between 3 (MM = 0) and 16 (MM = 0.63). The 
minimum a/d ratio to assure the validity of the proposed method increases with increasing the mode mixity ratio 
(MM), confirming the behavior observed with reference to K*FE and K**FE. 

 The usefulness of the SED expression based on the elastic peak stresses is that (i) only the elastic peak stresses 
numerically evaluated at the crack tip are needed and the definition of a control volume is no longer required; (ii) 
the employed meshes are rather coarse close to the crack tip, indeed the mean element size can be significantly 
greater than the radius of the control volume adopted for SED evaluation.  
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