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ABSTRACT. The existence of three-dimensional effects at cracks has been known for many years, but 
understanding has been limited, and for some situations still is. Understanding improved when the existence of 
corner point singularities and their implications became known. Increasingly powerful computers made it 
possible to investigate three-dimensional effects numerically in detail. Despite increased understanding, three-
dimensional effects are sometimes ignored in situations where they may be important. The purpose of the 
present investigation is to study by means of accurate 3D finite element (FE) models a coupled fracture mode 
generated by anti-plane loading of a straight through-the-thickness crack in linear elastic plates. An extended 
version of the present work has recently been published in the literature. 
The results obtained from the highly accurate finite element analyses have improved understanding of the 
behaviour of through cracked components under anti-plane loading. The influence of plate bending is 
increasingly important as the thickness decreases. It appears that a new field parameter, probably a singularity, is 
needed to describe the stresses at the free surfaces. Discussion on whether KIII tends to zero or infinity as a 
corner point is approached is futile because KIII is meaningless at a corner point.  
The intensity of the local stress and strain state through the thickness of the cracked components has been 
evaluated by using the strain energy density (SED) averaged over a control volume embracing the crack tip. The 
SED has been considered as a parameter able to control fracture in some previous contributions and can easily 
take into account also coupled three-dimensional effects. Calculation of the SED shows that the position of the 
maximum SED is independent of plate thickness. Both for thin plates and for thick ones the maximum SED is 
close to the lateral surface, where the maximum intensity of the coupled mode II takes place.  
  
KEYWORDS. Fracture mechanics; Finite element analysis; Anti-plane loading; Stress intensity factor; Corner 
point effects. 
 
 
INTRODUCTION 
 

rack tip surface displacements in the vicinity of a corner point in which a crack front intersects a surface are often 
of practical interest. Assuming that Poisson’s ratio, v > 0, then kinematics considerations for an antisymmetric 
loading [1-2] show that modes II and III crack tip surface displacements cannot exist in isolation. Mode II C 
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induces mode IIIc and mode III induces mode IIc. These induced modes are sometimes called coupled modes, indicated 
by the superscript c. 
The existence of three-dimensional effects at cracks has been known for many years [3,4], but understanding has been 
limited, and for some situations still is. Understanding improved when the existence of corner point singularities [5] and 
their implications became known [6]. Despite increased understanding, three-dimensional effects are sometimes ignored in 
situations where they may be important.  
Within the framework of linear elastic fracture mechanics [7] the stress field in the vicinity of a crack tip is dominated by 
the leading term of a series expansion of the stress field [8]. This leading term is the stress intensity factor, K. In three 
dimensional geometries, the derivation of stress intensity factors makes the implicit assumption that a crack front is 
continuous. This is not the case in the vicinity of a corner point, and the nature of the crack tip singularity changes. The 
resulting corner point singularities were described in detail in 1979 by Bažant and Estenssoro [5]. Some additional results 
were given by Benthem in 1980 [9]. For corner point singularities, the polar coordinates in Fig. 1 are replaced by spherical 
coordinates (r, , ) with origin at the corner point. The angle  is measured from the crack front. 
There do not appear to be any exact analytic solutions for corner point singularities. In their analysis Bažant and 
Estenssoro [5] assumed that all three modes of crack tip surface displacement are of the form rλρpF(θ, ), where ρ is 
distance from the crack tip, and p is a given constant. They then calculated λ numerically for a range of situations: λ is a 
function of Poisson’s ratio, υ. For the antisymmetric mode, λ = 0.598 for υ = 0.3. Benthem [9] made an equivalent 
assumption but used a different numerical method to calculate . The stress intensity measure, K, may be used to 
characterise corner point singularities, where  can be regarded as a parameter defining the corner point singularity. 
However, expressions for numerical values of K, and associated stress and displacement fields, do not appear to be 
available. At the present state of the art the extent of a corner point singularity dominated region has to be determined 
numerically.  
At a corner point stresses are a singularity. They must be either infinite or zero,  is indeterminate, and it is reasonable to 
speak of stress intensity factors in an asymptotic sense [3]. In the limit, as a crack front is approached, displacement fields 
must be those of a stress intensity factor [9]. Hence, there is an infinitesimal K-dominated region within the core region of 
a corner point singularity. The stress intensity factors are proportional to s0.5 - λ where s is the distance from the surface 
along the z axis [9]. Hence, for the antisymmetric mode KII and KIII both tend to infinity as a corner point is approached. 
Further, as a corner point the ratio KIII/KII tends to a limiting value which is a function of v. For v = 0.3 the limiting ratio 
is 0.5 [9]. Benthem points out that KII and KIII lose their meaning at a corner point [9]. Dhondt suggests that modes IIc 
and IIIc might not be singular [10]. The predicted tendency to infinity is reasonable for KII since relevant stresses are in 
plane and disclinations are zero [3]. From a linear elastic viewpoint the predicted tendency of KIII to infinity cannot be 
correct [4]. At a surface shear stresses perpendicular to the surface are zero, which implies that KIII tends to zero as the 
surface is approached. Mode III is a torsion problem [11]. Under mode III (anti-plane) loading initially plane cross 
sections, including the surface at a corner point, do not remain plane under load [4] and disclinations appear. It is well 
known that serious error can arise if warping of non-circular cross sections under torsion is not taken into account in 
stress analyses [12]. Warping of the surface under mode III means that τyz at the surface does not have to be zero, and 
finite values of KIII are possible. The implication is that the non linearities cannot be regarded as being in a core region 
within a corner point singularity dominated region and that Bažant and Estenssoro’s prediction that KIII tends to infinity 
as a corner point is correct. The alternative view, which is supported by a large body of evidence [4], is that apparent 
values of KIII decrease towards the surface in the z direction. This implies that KIII tends to zero as a corner point is 
approached, which is intuitively correct. It also implies that non linearities can be regarded as being within a core region, 
but does not explain why Bažant and Estenssoro’s analysis does not give the correct limit. Nevertheless, this alternative 
view may well be adequate when considering practical implications. This paradox needs to be resolved so that the results 
of finite element analysis can be interpreted correctly. 
There does not appear to have been a systematic investigation of the extent to which Bažant and Estenssoro’s initial 
assumption is justified. Their assumption does appear to be satisfactory for the symmetric mode (mode I) in that their 
analysis leads to useful results [4]. The purpose of the present investigation is to study a coupled fracture mode generated 
by anti-plane loading of a straight through-the-thickness crack in linear elastic plates by means of accurate three-
dimensional finite element (FE) models. An extended version of the present work has recently been published in the 
literature [3]. The material is assumed to be a homogeneous isotropic continuum, and its behaviour is assumed to be 
linearly elastic.  
Due to the uncertainties in the definition of the stress intensity factors on the free surfaces, as stated above, the strain 
energy averaged in a control volume (SED) has been employed in the present contribution to quantify the stress intensity 
through the thickness of the plate. For a review of the SED the reader can refer to [13]. This parameter has been 
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successfully used by Lazzarin and co-authors to assess the fracture strength of a large bulk of materials, characterized by 
different control volumes, subjected to wide combinations of static loading [14 - 16] and the fatigue strength of notched 
components [17, 18]. As described in [13, 19] an intrinsic advantage of the SED approach is that it permits automatically 
to take into account higher order terms and three-dimensional effects. The parameter is easy to calculate in comparison 
with other well-defined and suitable 3D parameters [20, 21] and can be directly obtained by using coarse meshes [13, 19]. 
Another advantage of the SED is that it is possible to easily understand whether the through-the-thickness effects are 
important or not in the fracture assessment for a specific material characterized by a control volume depending on the 
material properties. Some brittle materials are characterized by very small values of the control radius and are very 
sensitive to stress gradients also in a small volume of material [13]. On the other hand more ductile materials have the 
capability of stress averaging in a larger volume and for this reason are less sensitive to the variations of the stress field 
through the thickness of the plate. The SED, once the control volume is properly modeled through the thickness of the 
plate, is able to quantify the 3D effects in comparison with the sensitivity of the specific material so providing precious 
information for the fracture assessment.  
 
 
FINITE ELEMENT MODELLING 
 

n the present calculations, stresses, stress intensity factors and displacements are examined in detail for 100 mm 
square plates of various thicknesses under anti-plane (nominal mode III) loading. One half of the plate geometry 
used is shown in Fig. 2. The thickness is t. A through thickness crack has its tip at the centre of the plate, so its 

length, a, is 50 mm. Calculations are carried out using ANSYS 11 for t/a = 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 
2.75 and 3. Poisson’s ratio is taken as 0.3 and Young’s modulus as 200 GPa. A displacement of 10-3 mm is applied to the 
edge of the plate. Stress intensity factors are calculated from stresses on the crack surface near the crack tip using standard 
equations [7, 11]. The strain energy density is calculated from a control volume at the crack tip. One quarter of the plate is 
modelled. An overall view of the finite element mesh is shown in Fig. 3. Details of the mesh at the outer surface and crack 
tip are shown in the figure.  
 

Figure 1: Notation for crack tip stress field. Figure 2: Plate geometry. 
 

 
 

Figure 3: Overall view of finite element mesh. Detail of finite element mesh at outer surface and at crack tip. 

I 
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RESULTS 
 

rack surface stresses, τyz and τxy (Fig. 1) were extracted from the finite element results at distances, s, from the plate 
surfaces of 0 mm, 0.25 mm, 1 mm and 2 mm. Results for t/a = 1, plotted on logarithmic scales, are shown in 
Figs. 4-6. Results for other values of t/a are generally similar, but with some differences in detail. When the plot is 

a straight line its slope is -λ. Values of λ taken from straight line plots are shown in Tab. 1 and 2. Where no value is shown 
the plot could not be regarded as a straight line.  
For s = 0.25 mm, 1 mm and 2 mm λ calculated from τxy is close to the theoretical value of 0.5 for a stress intensity factor 
singularity (Tab. 1). Hence, realistic values of KII can be calculated. For s = 0 mm the value of λ has a maximum for t/a = 
0.25, and decreases as t/a increases. The values of λ are all significantly less than the theoretical value of 0.598 for a corner 
point singularity. Realistic values of KII can probably be calculated for t/a > 2.  
Realistic values of KIII can be calculated from τyz for s = 1 mm and 2 mm. The results for s = 0 mm (Fig. 4) show that τyz is 
slightly lower than τxy for small x, and decreases as x increases. Realistic values of KIII cannot be calculated. The presence 
of finite values of τyz, linked to finite values of KIII, appears because of the appearance of mode I disclinations, which are 
rotations about the y axis. Differentiating the expression for the displacement Uz gives the amount of this rotation which 
increases towards the crack tip, with a concomitant increase in τyz at a surface. This accounts qualitatively for the observed 
distributions of τyz at a surface. 
 

t/a s = 0 mm s = 0.25 mm s = 1 mm s = 2 mm 

0.25 0.538 0.498 0.497 0.497
0.5 0.527 0.498 0.497 0.497
0.75 0.523 0.498 0.497 0.497

1 0.520 0.498 0.497 0.497
1.25 0.517 0.498 0.497 0.497
1.5 0.515 0.498 0.497 0.497
1.75 0.513 0.498 0.497 0.497
2. 0.512 0.498 0.497 0.497

2.25 0.510 0.498 0.497 0.497
2.5 0.510 0.498 0.497 0.497
2.75 0.509 0.498 0.497 0.497

3 0.508 0.498 0.497 0.497
 

Table 1: Values of λ for τxy, s is the distance from the free surface in the z direction. 
 
 

t/a s = 0 mm s = 0.25 mm s = 1 mm s = 2 mm 

0.25 - - 0.507 0.504
0.5 - - 0.506 0.503
0.75 - - 0.506 0.502

1 - - 0.506 0.502
1.25 - - 0.506 0.502
1.5 - - 0.506 0.502
1.75 - - 0.506 0.502

2 - - 0.506 0.502
2.25 - - 0.506 0.502
2.5 - - 0.505 0.502
2.75 - - 0.506 0.502

3 - - 0.506 0.502
 

Table 2: Values of λ for τyz, s is the distance from the free surface in the z direction. 
 

C 
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Figure 4: Stresses τyz and τxy on crack surface at s = 0 mm from 
plate surface, t/a =1. 

Figure 5: Stresses τyz and τxy on crack surface at s = 0.25 mm from 
plate surface, t/a =1. 
 

Figure 6: Stresses τyz and τxy on crack surface at s = 2 mm from 
plate surface, t/a =1. 

Figure 7: Through thickness distribution of KII and KIII for: t/a = 
1, x = 0.05 mm. 

 
Through-the-thickness distributions of KII and KIII for t/a = 1 is shown in Fig. 7. From Tab. 1 and 2 the values of KII are 
not realistic for s < 0.25 mm and the values of KIII are not realistic for s < 1 mm.  
The distribution of KIII presents a maximum at the centre line, but KIII then remains nearly constant for about half the 
distance to the plate surface. The influence of plate bending means that maxima steadily decrease as t/a decreases. As a 
surface is approached KIII first decreases slightly then increases to a maximum at about 0.15 mm from the surface. There 
is then an abrupt drop which is within the region where realistic values of KIII cannot be calculated. 
Plate bending theory [2] suggests that KII should be zero on the centre line, with a linear increase towards a surface. KII 
does indeed increase linearly for much of the thickness with a greater increase as the surface is approached. This is within 
the region where realistic values of KII cannot be calculated. The extent of the linear portion, in terms of plate thickness, 
decreases as t/a increases but is still present when t/a = 3. Maximum values of KII are at the surface. This is within the 
region where calculated KII values are not realistic so caution is needed in the interpretation of results. 
 
 
DISCUSSION 
 

here has been a lot of discussion on whether KIII tends to zero or infinity as a corner point is approached [3]. 
When apparent KIII values are calculated from stresses at a constant distance from the crack tip then KIII appears 
to tend to zero as the model surface is approached (Fig. 7), in accordance with the linear elastic prediction. 

However, apparent values of KIII at the surface, linked to finite values of τyz (Fig. 4), increase strongly as the distance from 
the crack tip at which they are calculated decreases. These results can be interpreted as indicating that KIII tends to infinity 
at a corner point in accordance with Bažant and Estenssoro’s prediction. The results in Fig. 7 also show that KII does 
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appear to tend to infinity as the surface is approached, in accordance with Bažant and Estenssoro’s prediction. The 
discussion is futile because, as pointed out by Benthem [9], KIII is meaningless at a corner point and there is no paradox.  
For s ≥ 0.2 mm λ calculated from τxy is close to the theoretical value of 0.5 for a stress intensity factor singularity so KII 
provides a reasonable description of the crack tip stress field. Similarly, KIII provides a reasonable description of the crack 
tip stress field for s ≥ 1 mm. At the surface values of λ obtained from τxy are always less than the theoretical value for a 
corner point singularity, and decrease with increasing plate thickness. The distribution of τyz at the surface (Fig. 4) cannot 
be accounted for on the basis of Bažant and Estenssoro’s analysis. There is clear evidence of a boundary layer effect 
whose extent is independent of plate thickness. The only available characteristic dimension controlling the boundary layer 
thickness is the crack length, a.  
 
 
STRAIN ENERGY DENSITY THROUGH THE PLATE THICKNESS 
 

he intensity of the local stress and strain state through the plate thickness can be easily evaluated by using the 
strain energy density (SED) averaged over a control volume embracing the crack tip (see Ref. [13] for a review of 
the SED approach). The main advantage with respect to the local stress-based parameters is that it does not need 

very refined meshes in the close neighbourhood of the stress singularity [19]. Furthermore the SED has been considered 
as a parameter able to control fracture and fatigue in some previous contributions [14-16] and can easily take into account 
also coupled three-dimensional effects [4, 22].  
With the aim to provide some numerical assessment of the contribution of the three-dimensional effects, specifically the 
coupled fracture mode, KII, the local energy density through the plate thickness is evaluated and discussed in this section. 
Fig. 8 shows the local SED variation across the plate averaged over a cylindrical volume having radius R0 and height h, 
with h about equal to R0. In Refs [13-18] R0 was thought of as a material property which varies under static and fatigue 
loading but here, for the sake of simplicity, R0 and h are simply set equal to 1.0 mm, only to quantify the three-dimensional 
effects through the disc thickness.  
The influence of the applied mode III loading combined with the induced singular mode II loading is shown in Fig. 8. It 
is evident that the position of the maximum SED is the same in all cases. It is close to the lateral surface, where the 
maximum intensity of the coupled mode II takes place, both for thin plates, t/a = 0.5 and 1.0, and for thick ones, t/a = 2 
and 3. In fact, as can be seen from Fig. 7, the maximum contribution of the coupled mode II, at the lateral surface, is 
significantly higher (about 4 times) compared to the maximum contribution of the applied mode III, at the mid plane.  
 

 
 

Figure 8: Through the thickness SED distribution for t/a = 0.50, 1, 2, 3. Control radius R0 = 1.00 mm. 
 

 
CONCLUSIONS 
 
1) The results obtained from the highly accurate finite element analyses have improved understanding of the behaviour 

of through cracked plates under anti-plane loading. In particular, it is confirmed that mode III does induce coupled 
mode IIc. 
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2) The influence of plate bending is increasingly important as plate thickness decreases. The anti-plane loading used is a 
nominal mode III loading. For thin plate it is a mixed modes III and II loading, in which mode III induces mode IIc 
and vice versa. At the present state of the art it is not possible to separate the coupled modes from the applied modes. 

3) Bažant and Estenssoro’s analysis works well for the symmetric mode (mode I), but it is incomplete for the asymmetric 
mode (a combination of modes II and III). 

4) Discussion on whether KIII tends to zero or infinity as a corner point is approached is futile because, as pointed out by 
Benthem, KIII is meaningless at a corner point. 

5) The present results do not confirm the existence of a corner point singularity dominated region within a K-dominated 
region. It appears that a new field parameter, probably a singularity, is needed to describe the stresses at the plate 
surfaces. 

6) Calculation of the strain energy density (SED) in a control volume at the crack tip shows that the position of the 
maximum SED is independent of plate thickness. Both for thin plates and for thick ones the maximum SED is close 
to the lateral surface, where the maximum intensity of the coupled mode II takes place.  

7) Under the anti-plane loading used theoretical understanding of the stress field in the vicinity of a corner point is still 
incomplete. 
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