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ABSTRACT. The weight function method provides a powerful and reliable tool for the determination of the 
stress intensity factor around the crack tip in a linearly elastic cracked solid subjected to arbitrary loading 
conditions. However, it is difficult to exactly compute the crack face displacement whose partial derivative is 
responsible for the weight function calculation. In the present paper, only one reference stress intensity factor is 
used for the purpose of establishing a general expression of the crack face displacement. Then, the generalized 
and simple expression is applied to calculate the weight function and the stress intensity factor of the center 
crack configuration. The calculation of the weight function is reduced to the simple integration of the 
correction function and of the partial derivative of the crack face displacement. It is shown that the present 
expressions for the computations of the crack face displacement and its partial derivative are in good agreement 
with their exact solutions. 
  
KEYWORDS. Weight function; Crack face displacement; Stress intensity factor; Center crack configuration. 
 
 
 
INTRODUCTION 
 

s is known, the stress intensity factors (SIFs) dominate the singular stress states around the crack tip. Thus, the 
calculation of the SIFs is of quite importance for assessing the load capacity, fatigue crack growth rate and 
fracture failure control of a cracked component. Although the SIFs are possibly available in some of the SIF 
handbooks [1], the documented solutions are sometimes inapplicable in practical problems due to complicated 

non-linear stress fields. The weight function method provides a reliable method to calculate the SIF around a crack tip in a 
2D linearly elastic body subjected to any arbitrarily chosen load systems [2]. Wu and Carlsson [3] presented the generalized 
weight function method based on the physical judgment on the shape of the opened crack, and subsequently derived the 
SIFs for center cracks in finite width plates with mixed boundary conditions. Shen and Glinka [4] used two linearly 
independent reference stress intensity factors together with the characteristic properties of the weight function to 
determine the three unknown parameters in the universal weight function. Overall, the weight function method makes it 
possible to determine exact and reliable stress intensity factors which are useful for the evaluation of fatigue crack growth 
and residual strength of aircraft structures in service. 
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Nevertheless, the weight function is strongly dependent on the solution of the crack face displacement whose functional 
dependence on the crack is undetermined. Therefore, it is necessary to make appropriate assumption on the opened crack 
shape. The present paper is aimed at developing an approximate and simple expression of the crack face displacement for 
collinear cracks and center crack subjected to mode I loading conditions. 
 
 
WEIGHT FUNCTION METHOD 
 

he weight function method has been widely applied to determine the SIFs of cracked structures since it is able to 
take complex loading conditions into consideration. It has been shown that, if the SIF K(a)(1) and the crack face 
displacement u(1)(x, a) of any linearly elastic cracked solid are known as functions of the crack length a for a 

symmetrical load system (1), then for the same cracked solid subjected to any other symmetrical load system (2), the SIF 
K(a)(2) can be obtained by the simple integration of the weight function h(x, a) and the stress function σ(2)(x): 
 

 ( 2 ) ( 2 )

0
( ) ( ) ( , )

a
K a x h x a dx                                                                                (1) 

 
where the weight function, independent of σ(2)(x), is defined as: 
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In Eq. (1) and (2), a is the half or full crack length for edge cracks and center cracks, respectively; H is a material constant, 
H=E for plane stress condition and H=E/(1-v2) for plane strain condition with E the Young’s modulus and v the 
Poisson’s ratio; K(a)(1) and u(1)(x, a) are, respectively, the known reference stress intensity factor and the crack face 
displacement in mode I loading conditions for the known load system (1); and σ(2)(x) is the stress distribution function 
across the plane of the crack in the crack free solid subjected to the load system (2). 
From Eq. (1), it is known that if the weight function is set to be a known function for a particular crack geometry, the SIF 
for any stress distribution is able to be calculated by integrating Eq. (1). Therefore, the main problem is to exactly 
determine the weight function h(x,a) and the corresponding partial derivative (1)( , )/u x a a   of the crack face 
displacement. For a reference SIF K(a)(1), it is possibly available in the SIF handbooks for a wide range of crack 
configurations and loading conditions. However, there are often no detailed databases about the crack face displacement 
u(1)(x, a), and it is difficult to rigorously calculate u(1)(x, a) since the functional dependence of u(1)(x, a) on both x and a is 
undetermined. Thus, approximate u(1)(x, a)-solutions across the crack line of a cracked solid are of primary importance for 
determining the weight function h(x, a) and stress intensity factor K(a)(2) [5]. 
 
 
CRACK OPENING DISPLACEMENTS ACROSS THE CENTER CRACK 
 

n Eq. (1) and (2), if K(a)(1)=K(a)(2)=K(a), and σ(1)(x)= σ(2)(x)= σ(x). Then, substituting (2) into (1), it leads to: 
 

       2

0

( , )
( ) ( )

a u x a
K a H x dx

a
 

 
                                                                                       (3) 

 
So, the crack face displacement u(x, a) in eqn. (3) is the only unknown function dependent on the crack line x and half of 
the crack length a. As is well known that u(x=a, a)=0 for any crack tip. As a result, Eq. (3) becomes: 
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0
( ) ( ) ( , )

a
K a H x u x a dx

a
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 
                                                                                         (4) 

 
Integrating Eq. (4) over the half crack length a, we have: 
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0 0
( ) ( ) ( , )

a a
K a da H x u x a dx                                                                             (5) 

T 
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Based on the previous works [3], the crack face displacement u(x, a) is assumed to be dependent on x and a: 
 

   * *
0 0 1 1, ( ) ( )

x x
u x a u a u u a u

a a
       
   

                                                                         (6) 

 
where u0(a) and u1(a) are the unknown functions relative to the half crack length a;  *

0 /u x a  describes the deformation of 

the center crack;  *
1 /u x a  is assumed to be the higher order of  *

0 /u x a . 

To approximately determine the crack face displacements u(x, a) across the whole crack line of a central through crack, 
u(x, a) should also follow the given criterions below [3, 5]:  

(I) exhibiting proper limiting behavior near the crack tip;  
(II) deforming as a shape of the ellipse when the cracked solid is subjected to a remotely uniform stress field;  
(III) demonstrating the consistent behavior for the small crack;  

(IV) 
 

0

,
| 0x

u x a

a 





. 

If an infinite solid with a central through crack of the length 2a is subjected to a remotely uniform tensile stress filed σ0, the 
crack face displacements and the SIF are, respectively, presented as: 
 

      0
0

2
, 2    and   yu x a a K a a

H


                                                      (7) 

 
where ξ=0 is the coordinate with its origin at one of the crack tips, and ξ=2a is the other crack tip. 
Based on eqn. (7), if a finite solid, with a center crack of the length 2a, is also undergoing a remotely uniform tensile stress 
σ0, the crack face displacements and the SIF are able to be written as: 
 

           0
0

2
,    and   y

f a
u x a a x a x K a f a a

H


                                            (8) 

 
where x is the coordinate with its origin at the crack center; x=±a are set to be the two crack tips of the crack; 2b is the 
width of the elastic cracked solid; f(a) is defined as the correction function which is dependent on the crack geometry and 
the size of the cracked solid. 
In the criterion (II), it is assumed that the crack face displacement of the center crack deforms as a shape of the ellipse 
when the cracked body is subjected to a uniformly distributed stress field perpendicular to the crack line. So, the shape of 
the opened crack can be expressed as an elliptic function: 
 

  2
*
0 1

x xu aa
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                                                                                         (9) 

 
As a consequence, from Eq. (8) and (9) the first term in the right hand side of Eq. (6) is determined as: 
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Here, the first term u(x, a) satisfies the criterions (I) and (II). So, the second term u(x, a) should make the full expression of 

u(x, a) satisfy all the four criterions. Upon that, *
1

x
u

a
 
 
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 is taken as a higher order of *
0

x
u

a
 
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: 
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To make u(x, a) demonstrate the consistent behaviour for the small crack, u1(a) should have the characteristic properties: 
u1(a)=0(1/a) if the half crack length a tends to be zero. Based on the above criterions, an approximate and simple 
expression of the crack face displacement is derived as: 
 

          
3/22 2

* * 0
0 0 1 1

2
, 1 1

f a a g ax x x x
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                      
         

          (12) 

 
where g(a) is the only unknown function of the half crack length a. 
Substituting eqn. (12) into (5), and assuming the stress function σ(x) is equal to a constant value σ0, it leads to: 
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and solving Eq. (13), the unknown function g(a) is determined as: 

 

  2 2
0 00
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g a f a ada f a a H                                                                                        (14) 

 
Finally, substituting eqn. (14) into (12), the fully expression of the crack face displacements is derived as: 
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RESULTS AND DISCUSSIONS 
 
Calculations of u(x,a) and  , /u x a a   for collinear cracks 

o check the accuracy of the expression for u(x, a) of the central through crack, an array of collinear cracks in an 
infinite plate, subjected to a uniformly tensile stress field σ0, is taken into account. So, the correction function f(a) 
is: 
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( ) tan
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                                                                                                                           (16) 

 
where 2a is the full crack length; and 2b is set as the distance between the two adjacent crack center lines. 
Substituting eqn. (16) into (15) and simplifying the expression, the dimensionless displacement is determined as: 
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                                         (17a) 

 
Also, a generalized formula for the crack face displacements has been given by Wu and Carlsson [3]: 
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For the same situation, the exact u(x, a)-solution was presented as [3]: 
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ln cos cos cos ln cos
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                          (19a) 

 
Fig.1(a) presents the variations of the dimensionless crack face displacements Hu(x, a)/(σ0b) for collinear cracks in an 
infinite plate, respectively, determined by Eq. (17a), (18a) and (19a). It is clearly shown that if the values of a/b≤0.5, values 
of Hu(x, a)/(σ0b) calculated through Eq. (17a) and (18a) are in good agreement with the exact u(x, a)-solutions given by 
eqn. (19a). For this situation, the maximum difference between the results by Eq. (18a) and (19a) is about 0.359% occurred 
at a/b=0.5 and x/a=0.95; but the maximum difference between Eq. (17a) and (19a) is only 0.0071% when a/b=0.5 and 
x/a=0. Once the values of a/b≥0.7, the differences between the crack face displacements by Eq. (18a) and (19a) increase 
sharply from 1.9% (a/b=0.7 and x/a=0.95) to 17.06% (a/b=0.95 and x/a=0.95). But, the differences between Eq. (17a) 
and (19a) are still in the small range of 0.092% to 5.1%. Therefore, it is concluded that the present expression of the crack 
face displacement for collinear cracks can give much better u(x, a)-solutions than that calculated by eqn. (18a) since the 
higher order term √[1-(x/a)2] is taken into account. Fig.1(b) gives the relationship between Hu(x, a)/(σ0b) and a/b-values 
for collinear cracks according to eqn.(17a). It is then seen that the crack face displacements increase with the increasing 
values of a/b. 

 
Figure1: Comparisons of the dimensionless crack face displacements for collinear cracks (a) Hu(x, a)/(σ0b) versus x/a; (b) Hu(x, 
a)/(σ0b) versus a/b. 

 
According to Eq. (17a), (18a) and (19a), the dimensionless partial derivatives of u(x, a) for an array of collinear cracks 

are, respectively, derived as (17b), (18b) and (19b) below: 
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Fig.2 shows the variations of the dimensionless partial derivatives  , /u x a a   which is used for calculating the weight 

function h(x, a). Through Fig.2 (a), it is clearly found that for the values of a/b≤0.5, the dimensionless derivatives, 
separately, obtained by Eq. (17b) and (18b) agree quite well with those from the exact u(x, a)-solutions presented in Eq. 
(19b). For 0.7≤a/b≤0.9, the predicted values of  , /u x a a   by Eq. (17b) can give lower errors than Eq. (18b) due to the 

consideration of the higher order of  2
1 x a . From Fig.2 (b), it is obviously observed that once the values of 

a/b>0.9, great differences are presented between the partial derivatives determined by Eq. (17b) and (18b) to (19b). 
 

 
Figure 2: Dimensionless partial derivatives of collinear cracks (a) 0≤a/b≤0.8; (b) 0.95≥a/b≥0.9. 

 

Calculations of weight functions and stress intensity factors 
To calculate the weight function through Eq. (2), the only unknown information is K(a)(1). To make the problem easier, it 
is better to choose the uniformly distributed stress field as the reference load system (1) since the basic assumption 
relevant to the crack shape is most suited for this type of loading condition. Therefore, the formula for computing the 
weight function of a finite width plate is in the form given below: 
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                                                                                (20) 

 
For a finite width plate with a central through crack, the correction function, dependent on the crack length 2a and the 
width of the finite plate 2b, is given as [1]: 
 
 2 3( ) 1 0.128 0.288 1.525f a p p p                                                                                    (21) 
 
where p=a/b is defined as the ratio between the crack length 2a to the width of the plate 2b. 
Substituting (21) into (15), the partial derivative u(x, a) for the center crack is solved as the function of a and x: 
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           (22) 

 
where f ′(a), G(a) and G′(a) are, respectively, determined as: 
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  
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






  

    (23) 

 
Subsequently, substituting (22) into (20), the weight function h(x, a) for the center crack in a finite plate by the present 
method is obtained and written as: 
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                                 
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f a ax x x

a a f a a

                                       

                  (24) 

 The weight function for a central through crack in an infinitely wide plate has been derived by Paris and Sih [4]: 
 

  ,
a x a x

h x a a
a x a x

  
 

 
                                                                                       (25) 

 
From Eq. (25), if x/a-value tends to be zero, the dimensionless weight function h(x, a)√(πa) tends to be a constant value 
of 2. This is the limiting condition for collinear cracks in an infinite plate and for center cracks in a finite plate. Based on 
Eq. (17b), (24) and (25), Fig.3(a) shows the variations of the weight function h(x, a)√(πa) for collinear cracks in an infinite 
plate and for center cracks in a finite plate at the center of the crack x/a=0. According to Eq. (1), (24) and (25), the SIFs 
for center cracks in mode I conditions are computed and presented in Fig.3(b). It is obviously found that the Eq. (25) 
used for crack problems will result in significant error for the calculations of weight functions and SIFs in finite plates 
since the correction function has not been considered.  
 
 
CONCLUSIONS 
 

 general approach has been presented to calculate the crack face displacement of collinear cracks in an infinite 
plate and of center cracks in a finite plate. The approximate and simple expression is able to be determined based 
on only one reference stress intensity factor and some criterions around the crack tip. The crack face A 
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displacement and its partial derivative, respectively, computed by the present expression and the exact solution are 
confirmed to be in good agreement if the values of a/b≤0.8. The calculation of the weight function for center cracks in 
mode I loading conditions is reduced to the simple quadrature of the correction function and of the partial derivative of 
the crack face displacement. It is concluded that the limiting value of the stress intensity factor in an infinite plate might 
introduce significant error into the weight function and stress intensity factor evaluation. 
 

 
Figure 3: Comparisons of collinear cracks and center crack (a) weight function variation; (b) SIF variation. 
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