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ABSTRACT. In recent years, very-high-cycle fatigue (VHCF) behavior of metallic materials has become a major 
point of interest for researchers and industries. The needs of specific industrial fields (aerospace, mechanical 
and energy industry) for structural components with increasingly large fatigue lives, up to 1010 cycles (gigacycle 
fatigue), requested for a more detailed investigation on the experimental properties of materials in the VHCF 
regime. 
Gigacycle fatigue tests are commonly performed using resonance fatigue testing machines with a loading 
frequency of 20 kHz (ultrasonic tests). Experimental results showed that failure is due to cracks which nucleate 
at the specimen surface if the stress amplitude is above the conventional fatigue limit (surface nucleation) and 
that failure is generally due to cracks which nucleate from inclusions or internal defects (internal nucleation) 
when specimens are subjected to stress amplitudes below the conventional fatigue limit. Following the 
experimental evidence, the Authors recently proposed a new statistical model for the complete description of S-
N curves both in the high-cycle-fatigue (HCF) and in the VHCF fatigue regions (Duplex S-N curves). The 
model differentiates between the two failure modes (surface and internal nucleation), according to the estimated 
distribution of the random transition stress (corresponding to the conventional fatigue limit). No assumption is 
made about the statistical distribution of the number of cycles at which the transition between surface and 
internal nucleation occurs (i.e., the transition fatigue life). 
In the present paper, the statistical distribution of the transition fatigue life is obtained, according to the 
statistical model proposed. The resulting distribution depends on the distance between the HCF and the VHCF 
regions and on the distribution of the random transition stress. The estimated distribution can be effectively 
used to predict, with a specified confidence level, the number of cycles for which an internal nucleation may 
probabilistically occur in a VHCF test and it is also informative for properly choosing the end of HCF tests in 
terms of number of cycles. 
A numerical example, based on experimental datasets taken from the literature, is provided. 
 
KEYWORDS. Ultra-high-cycle; Gigacycle; Random transition-stress; Random transition fatigue-life; Random 
fatigue limit. 
 
 

 

INTRODUCTION  
 

n recent years, Very-High-Cycle-Fatigue (VHCF) test results showed that specimens may also fail at stress amplitudes 
below the conventional fatigue limit and, therefore, drastically affected the way of modelling fatigue data and 
designing machine components under VHCF loading conditions [1]. I 
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Two distinct failure mechanisms are generally visible in VHCF data plots and, at a stress value near the conventional 
fatigue limit, plots show a plateau separating the two failure modes. For this reason, the conventional fatigue limit can be 
considered as a transition stress that differentiates between the two failure modes [2]. In particular, the plateau separating 
different failure mechanisms represent a transition stress, while the plateau separating finite lives from infinite lives can be 
considered as a real fatigue limit, if it exists [3, 4]. Following the experimental evidence, new fatigue life models [2, 5-7] 
were proposed in the literature for the description of S-N curves characterized by two failure modes. 
A novel general statistical model, which can take into consideration the two failure modes (Duplex S-N curve) and the 
possible presence of a fatigue limit is described in [8]. The model differentiates between the two failure modes (surface 
and internal nucleation) according to the estimated distribution of the random transition stress (corresponding to the 
conventional fatigue limit). No assumption is made about the statistical distribution of the number of cycles at which the 
transition between surface and internal nucleation occurs (i.e., the transition fatigue life). 
In the present paper, the statistical distribution of the transition fatigue life is obtained, according to the statistical model 
proposed in [8]. A numerical example, based on experimental datasets taken from the literature, is provided. The paper 
shows results obtained in case of a Duplex S-N curve with fatigue limit. 
 
 
METHODS 
 

n [8], a unified statistical model for various types of S-N curve was defined. In Subsection Duplex S-N curves: statistical 
model, the particular case of Duplex S-N curves is recalled. The model is able to take into account the possible 
presence of a fatigue limit. In Subsection ‘Transition life: statistical distribution’ a procedure for the estimation of the 

statistical distribution of the transition life is presented. 
 
Duplex S-N curves: statistical model 
In case of Duplex S-N curve with fatigue limit, the cumulative distribution function (cdf) of the fatigue life Y  (i.e., 
logarithm of the number of cycles to failure) can be expressed as [8]: 
 

 1
t l tY X X XY surf Y intF F F F F F           (1) 

 

where  

Y surfF  is the cdf of the fatigue life if crack nucleates superficially (i.e., of the random variable (rv) )Y surf ,  

Y intF  is the cdf of the fatigue life if crack nucleates internally (i.e., of the rv Y int ),  

tXF  is the cdf of the logarithm of the transition stress (i.e., of the rv tX ), 

lXF  is the cdf of the logarithm of the fatigue limit (i.e., of the rv lX ). 

YF  given in Eq. (1) depends on the cdfs of the continuous rvs lX , tX , Y int  and Y surf . According to what proposed 

in the literature [9-12] for the fatigue strength, both lX  and tX  can be assumed as Normal distributed (i.e., the fatigue 

limit and the transition stress are Log-Normal distributed). In particular, let lX  have mean value 
lX  and standard 

deviation 
lX , and tX  have mean value 
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where  
Φ  is the standardized Normal cdf, 
x  denotes the logarithm of the applied stress amplitude. 
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In the literature [9-11], different types of continuous distribution have been proposed for the number of cycles to failure. 
Usually, either a 2-parameter Weibull distribution or a Log-Normal distribution are used for the cycles to failure rv. 
Without loss of generality, the conditional fatigue life is supposed to be Normal distributed (i.e., the conditional number 
of cycles to failure is Log-Normal distributed). Therefore, suppose that the mean values of Y int  and Y surf  follow the 

Basquin’s law and that the standard deviations are constant for any value of x , then: 
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where Y inta , Y intb , Y surfa  and Y surfb  are four constant coefficients related to the Basquin’s law and Y int  and Y surf  

denote the standard deviations of Y int  and Y surf , respectively. 
Fig. 1 shows a schematic of a Duplex S-N curve together with the statistical distributions assumed in each characteristic 
region: the surface-nucleation and the internal-nucleation regions are described by a randomly variable fatigue life (Eqs. 4 
and 5), while the transition and fatigue-limit regions are described by a randomly variable stress amplitude (Eqs. 2 and 3). 
 
 

 
 

Figure 1: Schematic of a statistical Duplex S-N curve with fatigue limit. 
 
By taking into account Eqs. 2-5, YF  finally becomes: 
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with a number of parameters equal to 10. 
 
Transition life: statistical distribution 
Statistical estimation of the parameters permits to compute the S-N curves corresponding to different probabilities of 
failure (quantile S-N curves). Eq. (6) can be exploited for the estimation of the  -th quantile S-N curve: if YF   and 
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the 10 parameters are substituted with their estimates, Eq. (6) provides the relationship between x  and y  when the 
probability of failure equals  , which is the definition of the  -th quantile S-N curve. 
Transition stress may vary from one specimen to another and, in a statistical framework, each specimen can be considered 
as representative of a particular quantile of the transition stress distribution. Similarly, a particular quantile S-N curve hides 
out each specimen. Therefore, for a given specimen, both the quantile S-N curve and the quantile of the transition stress 
distribution are uniquely determined. In particular, let the specimen be representative of the  -th quantile S-N curve (i.e., 

YF  ) and of the  -th quantile of the transition stress distribution (i.e., ,t tX x  ). If the stress amplitude equals the 

transition stress of the specimen (i.e., if ,tx x  ), then the fatigue life of the specimen corresponds to the transition life 

of the specimen (i.e., then ,ty y  ). Thus, Eq. (6) becomes: 
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where  

  denotes a parameter estimate,  

,ty   is the  -th quantile of the transition life distribution, 

,tx   is the  -th quantile of the transition stress distribution.  
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Eq. (8) provides an implicit relationship between ,ty   and   and, consequently, permits the numerical computation of 
the statistical distribution of the transition life. 
 
 
NUMERICAL EXAMPLE 
 

n experimental dataset taken from the literature [13] is analyzed in order to show main characteristics of the 
statistical distribution of the transition life. The selected experimental data [13] are obtained by testing Ti-6Al-4V 
titanium alloy specimens and are shown in Fig. 2. 

Estimates of the parameter involved in the model given in Eq. (6) can be computed by applying the Maximum Likelihood 
Principle to the experimental data. Results, obtained with a code developed in Matlab®, are given in the following list: 
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Figure 2: Experimental fatigue data plot [13]. 

 
 
Quantile S-N curves 
Parameter estimates given in Eq. (9) can be used for computing quantile S-N curves. In particular, if the  -th quantile S-
N curve is of interest, the following equation: 
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must be solved with respect to y  for different values of x . Fig. 3 shows the S-N plot together with the 10%, 50% and 
90% quantile S-N curves. 
 

 
 

Figure 3: Quantile S-N curves. 
 
As shown in Fig. 3 the region between the 10% and 90% quantile S-N curves includes about the 86% (which is close to 
the expected 80%) of the failure data; while the 50% quantile S-N curve is almost median between failure data at each 
stress amplitude. 
 
Statistical distribution of the transition life 
If parameters are substituted by their estimates, Eq. (8) can be used for numerically computing the statistical distribution 
of the transition life. To this aim, Eq. (8) must be solved with respect to ,ty   for different values of   ranging from zero 

to one. It is worth noting that for a given value of  , ,tx   in Eq. (8) is a known quantity and is equal to 
t tX Xz   , 

being z  the  -th quantile of a standardized Normal distribution. Fig. 4 shows the computed statistical distribution of 
the transition life. 
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Figure 4: Statistical distribution of the transition life together with the probable fatigue regions. 
 
As shown in Fig. 4, the median of the transition life can be usefully considered to discriminate between the two fatigue 
regions of HCF and VHCF: failures that occur at a number of cycles smaller than the median more probabilistically 
belong to the HCF region; while failures that occur at a number of cycles larger than the median more probabilistically 
belong to the VHCF region. For the analyzed case, the median of the transition life is equal to 7.035 , which results in a 
median transition cycle equal to 71.08 10 . As visible in Fig. 5, the median value properly differentiates between the two 
fatigue regions: each internally nucleated failure is above the median value, while each superficially nucleated failure is 
below the median value. 
 
 

 
 

Figure 5: Experimental data and probable fatigue regions as discriminated by the median value of the transition life. 
 
 
CONCLUSIONS 
 

 procedure for the estimation of the statistical distribution of the transition life in a Duplex S-N curve was shown. 
The statistical distribution was estimated by numerically solving an equation which correlates the cumulative 
distribution function to the quantile of the distribution. As shown with a numerical example taken from the 

literature, the resulting distribution depends on the distance between the HCF and the VHCF regions and on the 
distribution of the random transition stress. The estimated distribution can be effectively used to predict, with a specified 
confidence level, the number of cycles for which an internal nucleation may probabilistically occur in a VHCF test and it 
is also informative for properly choosing the end of HCF tests in terms of number of cycles. 
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