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ABSTRACT. In this paper, we consider the mechanical effect of the sulfate attack on concrete. The durability 
analysis of concrete structures in contact to external sulfate solutions requires the definition of a proper 
diffusion-reaction model, for the computation of the varying sulfate concentration and of the consequent 
ettringite formation, coupled to a mechanical model for the prediction of swelling and material degradation. In 
this work, we make use of a two-ions formulation of the reactive-diffusion problem and we propose a bi-phase 
chemo-elastic damage model aimed to simulate the mechanical response of concrete and apt to be used in 
structural analyses.  
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INTRODUCTION  
 

nder particular environmental conditions, some kinds of concrete may be subject to deleterious chemical 
reactions that cause swelling and micro-cracking, alter the mechanical properties and affect the durability of 
concrete structures. The chemistry behind different degradation processes in cement based material in aggressive 

environments has been the subject of a number of publications in the last twenty-five years; a comprehensive up-to-date 
review can be found e.g. in [1]. The present work focuses in particular on the sulfate attack and the consequent delayed 
ettringite formation. 
There are two kinds of sulfate attack: the internal sulfate attack (ISA) and external sulfate attack (ESA). In the first case, 
the sulfate ions are already present within the material because of the thermal depletion of primary ettringite due to curing 
at high temperature or to the excessive heat of hydration developed in massive structures, see e.g. [2, 3]. In the second 
case, the sulfate is present in the environment and diffuses within the material through the porous microstructure; this 
happens e.g. in foundations, galleries, stores of radioactive waste in contact with sulfate-rich soils, [4, 5]. In both cases, the 
reaction between the sulfate and hydrated products of the cement leads to the formation of gypsum and of secondary 
ettringite, [6-8]. The product formed in the hardened paste exerts an internal pressure resulting in the appearance of 
micro-cracks and material degradation.  
The kinetics of the reactions and, consequently, the severity of the damage depends on environmental factors (species and 
concentration of sulfate, pH of the solution, humidity, temperature) and intrinsic material properties (chemical 
composition of the cement paste, in particular aluminates content, pore distribution, diffusivity properties).  
The numerical description of these phenomena requires a proper diffusion-reaction model, for the computation of the 
amount of reaction expansive products and a mechanical model for the prediction of swelling and material damage. In this 
work we use the coupled model proposed in [7] and further developed in [9] which allows to compute the sulfate molar 
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concentration and the amount of formed ettringite from a diffusive-reaction equation, taking into account the aluminate 
depletion due to the reaction.  
The ettringite formation implies a volume increase and, once the initial porosity is filled, it induces a volumetric 
deformation. Several proposal exist in the literature to describe the mechanical consequences on concrete of this swelling. 
In [7] the volumetric expansion is treated as an eigenstrain and a simple uniaxial stress-strain law is used. In [10] Basista 
and Weglewski develop a micromechanical model based on the Eshelby solution of the equivalent inclusion method to 
determine the eigenstrain of the ettringite crystals in cement paste. In [11] a poroelasticity approach is followed and the 
Mazars’ damage model is used to describe concrete microcracking. Idiart et al. in [9] present finite element simulations of 
the phenomenon at the meso-scale, considering concrete as a two phase composite, constituted by aggregates and cement 
matrix and describe degradation by cohesive-crack interface elements.  
In the present work we follow a weakly coupled approach, similar to that proposed in [12, 13] for concrete affected by 
alkali-silica reaction. In the context of the Biot's theory of porous media, the concrete subject to sulfate attack is 
represented as a continuous medium consisting of two phases: the solid skeleton of concrete and the expansive products 
of the reaction. A phenomenological isotropic damage model, [14], describes the material degradation.  
The reactive-diffusion model and the mechanical model have been implemented in a finite element code and used to 
simulate the experimental tests concerning ESA reported in [15, 16]. 
 
 
CHEMO-TRANSPORT MODEL 
 

he reactions that take place inside the concrete when in contact with sulfate solutions are briefly reviewed in this 
section. The usual cement notation will be used: C ≡ CaO; A ≡  Al2O3; S  ≡  SO3; H ≡  H2O. Driven by a 
concentration gradient, the sulfates present in the environment penetrate into the material and, reacting with the 

calcium hydroxide (CH) and with the calcium silicate hydrates (C-S-H gel), form gypsum 2HSC . The gypsum thus 

produced reacts with the calcium aluminates which are present in the cement paste, forming ettringite 3236 HSAC  [6-7]. 
The set of chemical equations that describe the gypsum formation are  
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The reactions between the gypsum and the aluminates iP  ( 1P 124 HSAC  mono-sulphoaluminate, ACP 32   unreacted 

tricalcium aluminate, 1343 AHCP   tetra-hydrated aluminate and AFCP 44  alumino-ferrite) read respectively: 
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As proposed in [9], the reactions (2) can be lumped in a single reaction 
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 where Ceq is the equivalent grouping of calcium aluminates 
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ci is the molar concentration of the single species of calcium aluminate iP and 4321 4332 γγγγq   is the 
stoichiometric weighting coefficient of the sulfate phase.  
The molar concentration ),( ts x  of sulfate S , varying in space x and time t, can be computed taking into account the 
diffusion process and the consumption of sulfates due to the ettringite formation, through the following reactive-diffusion 
equation, Ds being the diffusion coefficient for the sulfate concentration and k  the rate of take-up of sulfates: 
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During the process of delayed ettringite formation also the calcium aluminates concentration ),( tcc eqeq x  decreases and 

the phenomenon affects the diffusion process of the sulfates. A more accurate description can be obtained by considering 
a second order chemical reaction in a two-ions formulation and computing the evolution of both the concentration of 
sulfate and aluminates from the following system: 
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Note that no diffusion term is present in the second equation since aluminates can not move in the cement paste. To 
integrate the system of differential Eq. (6), one should specify proper boundary conditions fixing the sulfate concentration 
s  or its normal gradient and initial conditions for both sulfate and aluminate concentrations.  
The simplified single-ions formulation (5) is obtained for eqckk   , with eqc  constant. The two-ions formulation (6) 

predicts a faster penetration of the sulfate with respect to the one-ion formulation (5), since the depletion of aluminates 
reduces the sulfate consumption due to the reactive term sck eq  in (6a) and thus results in a higher diffusion. 

In the present work the two-ions formulation has been implemented. 
Assuming that ettringite is the only reaction product governing the expansion of the concrete, the volumetric strain of 

chemical nature chem
vε is obtained from the amount of reacted calcium aluminates eqeq

reac ccc  0 (i.e the difference between 

the initial aluminates molar concentration and the current one) and the volume change associated with the reaction. For 
any of the individual reactions described above, Eq. (2), the volume change for unit volume associated to the formation of 
one mole of ettringite can be calculated as in [7]: 
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where ettringitei mm , and gypsumm are the molar volumes (m3/mol) of the aluminate phase, of the ettringite and of the gypsum, 

respectively, and ai is the stoichiometric coefficient involved in the reaction. To obtain the overall volume change per unit 

volume one has to multiply the change related to one mole by the number of reacted moles )( 0
iii

reac
ii ccmcm   and then 

take the sum of the contributions coming for the different aluminates.  Using the lumped formulation (3) one finally 
obtains 
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In the above equation   denotes the positive part of   and 0Φf  is a fraction of the initial porosity 0Φ , introduced to 

take into account the fact that the reaction products partially fill the initial porosity, without producing any macroscopic 
expansion. 
 
 
MECHANICAL BEHAVIOR OF CONCRETE 
  

he mechanical response of the material to the chemical expansion expressed by Eq. (8) is computed in this work 
by a poroelastic-damage model. Within the framework of the Biot’s theory [17], the concrete is described as a two-
phase material: the homogenized skeleton phase, including cement paste and aggregates, and the expansive phase 

of the products of the reaction. The total stress σ  is the sum of the effective stress acting on the solid skeleton σ  and of 
the stress on the reaction products phase, p being the pressure at the microscale, b the Biot’s coefficient related to the 
concrete porosity and 1 the unit second-order tensor:  
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1σσ bp                                                                   (9)  
 

The effective stress on the concrete skeleton is related to the total strain ε  by an elastic law with isotropic damage D, d is 
tensor of the elastic properties of the homogenized skeleton:  
 

εdσ :)1( D                                    (10)  
 

The pressure of the expansive phase depends on the volumetric deformation vε  and on the volumetric expansion ζ due 
to ettringite formation, M being the Biot’s modulus 
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The expansion term ζ can be related to chem
vε  for the unconstrained material by the Skempton coefficient  
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Only tensile damage is considered in this work and its evolution is governed by the loading-unloading conditions 
proposed in [14], expressed in term of the inelastic effective stress 1σσ pβ , with β  ( )bβ  a material parameter which 
tunes the level of material degradation: 
 

0  ;0  ;0  DfDf DD
           (13) 

 

The activation function fD depends on the first invariant of inelastic effective stress tensor I1 and on the second invariant 
of deviatoric stress tensor J2: 
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where a1, a2, a3 are non-negative parameters to be identified through experimental tests. The function h(D) governs the 
hardening and softening behavior of the material and its expression is 
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In the above equation eσ  is the elastic limit stress, 0σ  is the peak stress, D0 is the damage corresponding to the peak 
stress. The parameter a4 governs the slope of the softening branch of the stress-strain curve. In the finite-element 
implementation, the exponent a4 is used to scale the fracture energy density of the material in such a way that each finite 
element can dissipate the correct amount of energy, independently of its size. This so called ‘‘fracture energy 
regularization” prevents the occurrence of spurious mesh dependency in the structural global response. 
 
 
RESULTS 
 

he numerical solution of the diffusion-reaction problem and of the subsequent chemo-damage problem are 
obtained by an ad-hoc developed finite element code. 
Fracture energy pseudo-regularization is adopted. The finite element internal length for the constant strain 

tetrahedral elements is assumed to be the cubic root of the volume. 
To validate the approach proposed in this paper we simulate the external sulfate attack experiments on mortar prism 
reported in [15] and also simulated in [16]. The experimental campaign was carried out on 25×25×285 mm3 mortar prisms 

immersed in a solution with 3mol/m2.35 of Na2SO4. Simulations of the reaction-diffusion process were performed in 3D 
considering three symmetry planes and solving the two ions formulation (6). The reaction and diffusion parameters used 
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in the simulation are: day/mm07.0 2sD  and day/molm108 35k . A constant sodium sulfate concentration is 
imposed at the outer surfaces and no flux is allowed through the symmetry planes. The initial concentration of equivalent 
aluminates, reported in [16], is 100 mol/m3. 
 

 
Figure 1: External sulfate attack on a mortar specimen: a) sulfate concentration, b) ettringite concentration and c) damage for three 
different exposure times (200, 400, 600 days). 
 
Fig. 1a depicts the results of the evolution of the molar concentration of the sulfate at three different exposure times t = 
200 days, 400 days and 600 days. Fig. 1b depicts the corresponding ettringite concentration: because of the penetration of 
sulfate, the ettringite front advances towards the center of the specimen. Fig. 2 shows the profiles of ettringite 
concentration at different times as a function of the distance from the center in the mean section of the specimen. 
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Figure 2: Profiles of ettringite concentration in the central section of the specimen. 
 
The subsequent mechanical analysis allows computing the strains and damage in the specimen. A non-uniform initial 
porosity has been considered, leading, through Eq. 8, to a non-uniform chemical expansion in the specimen. Assuming a 
normal distribution with men value 0.08 and standard deviation 0.02, the porosity of the different finite elements have 
been extracted by the Marsaglia’s algorithm, also called “Ziggurat” algorithm; Fig. 3 displays the obtained pseudo-random 
distribution. 

 

 
 

Figure 3: Pseudo-random distribution of porosities within the specimen.  
 
Fig. 4 shows the comparison between the longitudinal expansion obtained in the simulations and the experimental 
measurements. After the first 150 days, a good agreement is observed. The discrepancy in the early response is due to the 
fact that full saturation is assumed in the numerical simulation, therefore the initial expansion due to imbibition is not 
reproduced.  

 
Figure 4: Evolution of longitudinal expansion with time of exposure to a Na2SO4 solution: experimental points from [15] and 
numerical results. 
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Fig. 1c depicts the evolution of the corresponding damage pattern. Since the chemical swelling reaction starts from the 
outer skin of the specimen, the central part of the specimen is subject to tensile stresses and undergoes damage.  
The pattern and the evolution of damage can be better appreciated in Fig. 5 that illustrates the results obtained with a 
finer mesh on a different geometry, representative of the central portion of the specimen. In the continuum approach 
here followed, the damage distribution simulates the presence of the cracking pattern experimentally observed, see e.g. 
[18]. 
 

 

 
 

Figure 5: External sulfate attack on a mortar specimen: a) ettringite concentration and b) damage for three different exposure times 
(200, 400, 600 days) 

 
 
CONCLUSIONS 
 

he model developed and implemented in this work allows for the computation of the mechanical response of 
concrete subject to sulfate attack. The weakly coupled approach followed makes the formulation simple enough to 
be used to effectively compute the response at the structural level. The predictive capabilities of the model have 

been shown on a preliminary simple example concerning ESA. 
A fully coupled formulation in which the effect of damage on the diffusion-reaction problem is taken into account is 
currently under development. 
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