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ABSTRACT. The Strong Formulation Finite Element Method (SFEM) is a numerical solution technique for 
solving arbitrarily shaped structural systems. This method uses a hybrid scheme given by the Differential 
Quadrature Method (DQM) and the Finite Element Method (FEM). The SFEM takes the best from DQM and 
FEM giving a highly accurate strong formulation based technique with the adaptability of finite elements. The 
present study investigates the stability and accuracy of SFEM when applied to 1D and 2D structural 
components, such as rods, beams, membranes and plates using analytical and semi-analytical well-known 
solutions. The numerical results show that the present approach can be very accurate using a small number of 
grid points and elements, when it is compared to standard FEM. 
  
KEYWORDS. Strong Formulation Finite Element Method; Differential Quadrature Method; Finite Element 
Method; Free Vibration Analysis; Static Analysis; Numerical Stability. 
 
 
 
INTRODUCTION  
 

his manuscript illustrates a general view of a class of methods which approximates functions at points, called 
collocation or sampling points. The complete review of the present methodology can be found in the previous 
works by the authors [1-6] and in the book by the authors [7]. The name which comprehends all this approaches is 

termed Strong Formulation Finite Element Method and it has its basis in the Differential Quadrature (DQ) Method 
(DQM) [8-12] as far as the numerical solution is concerned and in the Finite Element concept [13] as far as element 
connection is considered. The DQ method is part of a more general family of methods called Spectral Methods (SMs) 
[14-16] with the advantage of considering a free collocation once certain basis functions are set. However, DQM is not 
always stable increasing the number of collocation points. For this reason Generalized Differential Quadrature (GDQ) 
method was introduced by Shu [17]. Shu followed the former studies of Quan and Chang [10, 11], who developed a 
mathematical procedure for the definition of the weighting coefficients in exact form, thus the accuracy and stability is not 
lost increasing the number of grid points. Other papers that used the mapping technique for strong form based 
formulations can be found in [18, 19]. It should be mentioned that, the authors in their previous papers gave explicit 
formulae for the corner point conditions [1-6] that are an extension of the conditions given by other researchers. The 
following sections expose the mathematical basics of the DQ and GDQ methods. Only some details are given for the 
sake of conciseness, nevertheless for further details the interested reader can read the references [18-34]. In the numerical 
applications, the stability, reliability and accuracy of the Strong Formulation Finite Element Method (SFEM) and the 
Weak Formulation Finite Element Method (WFEM) are shown through several figures. 
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Table 1: List of several basis functions j  and their definition interval used in structural mechanics applications. 

 
 
DIFFERENTIAL AND INTEGRAL QUADRATURE 
 

enerally an unknown sufficiently smooth function  f x  can be approximated by a set of basis functions 

 j x  for 1,2, ,j N  , where N  is the total number of collocation points in a closed definition interval. A 

polynomial set uniformly converges to the unknown function when the number of grid points tends to infinity 
and the unknown function is smooth in a closed interval. Hence, the approximate solution of a function  f x  can be 
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found in the form 

   
1

N

j j
j

f x x 


           (1) 

These polynomials constitute a linear vector space NV  and are used for the approximation (1) [7, 17]. A list of several 
basis functions is given in Tab. 1 and it should be used as a reference for the present manuscript. It should be mentioned 
that Tab. 1 presents the polynomials in their definition interval indicated by r . The functional approximation is 
performed using the Cartesian coordinates, as indicated by Eq. (1). The approximation can be done if the domain is 
discretized in N  discrete points, such as kx  for , , ,1 2 k N . Tab. 2 reports the most common grid point distributions 

that can be found in literature. It is assumed that every grid is defined in the interval  0,1k  . In addition, some cases 

need extra points for the enforcement of the boundary conditions, known also as  -point technique [9, 12]). Hence, a 
grid distribution  0,1k   without  -points can be defined as 
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whereas considering  -points it takes the following aspect 
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The stretching formulation [7, 17] can be defined using the previous definitions (2)-(3), a grid distribution  0,1k   (Tab. 

2) and a non-zero constant  , as 
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This technique takes the points in the  0,1k   domain and stretches them into the domain  0,1k  . The parameter 

  cannot take any value because for some entries the distribution  0,1k   (see for more details [140]). Finally, the 

collocation points in dimensionless form  0,1k   must be transformed into the physical interval  ,kx a b , thus, a 

general coordinate transformation [7] can be used as 
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where  ,k c d   is a dimensionless discretization. Using the so-called differentiation matrix procedure [7, 10, 11, 17], the 

approximation (1) for the one-dimensional case can be written in matrix form as 
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structural component is described in the interval  0,kx   , where   is the domain length, the transformation (5) 

corresponds to 
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Expression (1) can be derived for the general n -th order polynomial and the derivative is transferred to the functions 

 j x , because the unknown coefficients j  do not depend on the variable x  
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Expression (8) can be written in matrix form as follows 
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f  is the vector which contains the derivative of the function  f x  

at all the discrete points ix . In order to perform the derivation, the matrix A  should be invertible. This property depends 

on the basis functions  j x  and on the location of the grid points. The unknown parameters vector λ  can be 

evaluated from Eq. (6) by simply inverting the matrix A , such as 
 

1λ A f             (10) 
 

Subsequently, substituting expression (10) into (9), one obtains 
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The differentiation matrix  nD  is found as a matrix product between the inverse of the matrix A  containing the values of 

the basis functions  j ix  in all the grid points and the derivatives of the same functions    n
j ix  contained in the  nA  

matrix. All the steps presented above are valid for any derivative order n . In general, Eq. (11) takes the form 
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In conclusion, a generic n -th order derivative can be expressed by the following relation 
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Although Eq. (12) is valid for any basis function and grid point distribution, the coefficient matrix A , since it is like the 
Vandermonde matrix, can become ill-conditioned when the number of grid points N  is large. It is important to note that, 

when the Lagrange polynomials  jl x , Lagrange trigonometric polynomials  jS x  or the Sinc function  jSinc x  are 

chosen as a basis of the linear vector space NV , the coefficient matrix A  becomes an identity matrix 
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This is due to the fact that, the three previous basis functions have the following properties 
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In all these three cases Eq. (12) becomes 
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The important consequence that derives from relations (14) and (15) is that the matrix A I  is always invertible 

( 1  IA ) and thus the ill-conditioning drawback does not occur when the Lagrange polynomials  jl x , Lagrange 

trigonometric polynomials  jS x  or the Sinc  function  jSinc x  are chosen. Further details about the weighting 

coefficients of the previously reported methodologies can be found in [7]. 
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a) b) 

Figure 1: a) Static analysis for single element structural components varying the number of points N  for a CC Rod, SS EB beam with  
 -points (1/2) and a CC Tim beam using PDQ basis functions and Che-Gau-Lob grid distribution. b) Static analysis for structural 
components varying the number of elements en  with 7N  for a CC Rod, SS EB beam with  -points (1/2) and a CC Tim beam 
using PDQ basis functions and Che-Gau-Lob grid distribution. 
 

     
a) b) 

Figure 2: a) Static analysis for structural components using Weak Formulation (WFEM) varying the number of elements en  with 
7N  for a CC Rod and a CC Tim beam using PDQ basis functions and Leg-Gau-Lob grid distribution. b) Dynamic discrete spectra 

for single element structural components with 151N   for a CC Rod, a SS EB beam with  -points (1/2) and a CC Tim beam using 
PDQ basis functions and Che-Gau-Lob grid distribution. 

 

  
a) b) 

Figure 3: a) Dynamic discrete spectra for various structural components with 7N  and 100en   for a CC Rod, a SS EB beam with 
 -points (1/2) and a CC Tim beam using PDQ basis functions and Leg-Gau grid distribution. b) Dynamic discrete spectra for several 
structural components using Weak Formulation (WFEM) with 7N   and 100en   for a CC Rod and a CC Tim beam using PDQ 
basis functions and Leg-Gau-Lob grid distribution. 
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 1

1

, roots of ,

1, 2,..., , 0,

k
k k M

M

r r
r G r

r r

k M r

 
 



    

 

Jacobi (Jac) Chebyshev-Gauss-Radau (Cheb-Gau-Rad) 

   ,1

1

, roots of ,

1, 2,..., , 1,1

k
k k M

M

r r
r J r

r r

k M r

  
 



    

 
 1

1
1

2 1
, cos ,

2 1

1, 2,..., , 1,1

k
k M k

M

kr r
r

r r M

k M r

  

 
      
    

 

Jacobi-Gauss (Jac-Gau) Ding et al. [37] distribution 

   ,1
1 2

1

, 1, 1, roots of ,

2,3,..., 1, 1,1

k
k M k M

M

r r
r r r J r

r r

k M r

  


    



     

 
1 1

1 2 cos , 1,2,...,
2 4 2 1k

k
k M

M

 
         

 

Chebyshev III (Cheb III) Chebyshev IV (Cheb IV) 

 1

1

, roots of , 1,2,..., , 1,1k
k k M

N

r r
r V r k M r

r r
 

      
  1

1

, roots of , 1,2,..., , 1,1k
k k M

N

r r
r W r k M r

r r
 

      
 

Radau I (Rad I) Radau II (Rad II) 

    1
1

1
11 2, 1, roots of ,

1,2,..., 1, 1,1

M M
k

k M k
M

r r
r r P r P

r
r

r

k M r

   


     



     

 
   1

1
2

1

, 1, roots of ,

1,2,..., 1, 1,1

k
M Mk M k

M

r
r r

r r P rP
r r

k M r

  


   



     

 

 

Table 2: List of several grid distributions used in structural mechanics applications. 
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a) b) 

Figure 4: a) Relative error of the first frequency for various structural components with 7N   for a CC Rod, a SS EB beam with  -
points (1/2) and a CC Tim beam using PDQ basis functions and Leg-Gau grid distribution. b) Effect of the grid point number inside 
each element for the static analysis of a CC Rod using SFEM with PDQ basis functions and Leg-Gau grid distribution, WFEM and 
SEM with PDQ basis functions and Leg-Gau-Lob grid distribution and FEM with linear and quadratic shape functions. 
 
However, when a domain decomposition method is taken into account, it could not be necessary to use a polynomial of 
high degree inside each element, because a good approximation might be captured with a number of points less than 

13N  . It has been demonstrated in [8, 9] that the Vandermonde matrix becomes ill-conditioned when 13N  . Thus, if 
a limited number of points is considered the matrix inversion (12) can be used for the evaluation of the weighting 
coefficients. It is also noted that considering a limited number of points any polynomial basis (Tab. 1) within any 
distribution (Tab. 2) can be taken into account for the evaluations of the weighting coefficients using the presented 
general scheme (12). On the contrary, when a single element is taken into account the weighting coefficients in exact form 
must be used to avoid ill-conditioning problems. The present work also illustrates some applications related to the Weak 
Formulation Finite Element Method (WFEM), where an integration procedure based on the weighting coefficients of the 
GDQ method is developed. The present technique has been described in the works [7, 17]. This approach has been 
termed the Generalized Integral Quadrature (GIQ) method. 

 

  
a) b) 

Figure 5: a) Dynamic discrete spectra with 100en   for a CC Rod using SFEM with PDQ basis functions and Leg-Gau grid 
distribution, WFEM and SEM with PDQ basis functions and Leg-Gau-Lob grid distribution and FEM with linear and quadratic shape 
functions. b) Relative error of the first frequency varying the number of elements en  for a CC Rod using SFEM with PDQ basis 
functions and Leg-Gau grid distribution, WFEM and SEM with PDQ basis functions and Leg-Gau-Lob grid distribution and FEM 
with linear and quadratic shape functions. 
 
In general, the numerical integration of a function  f x  over a domain  ,a b  can be defined as 

   
1

b N

k k
ka

f x dx w f x


                                          (17) 

1 
2 

1 
4 

6 
810

1 
1 1

1 
6 1 

10 

1 

10 
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where kw  are the weighting coefficients. The integral of  f x  over a given domain can be generally approximated by a 

linear combination of all the functional values in the whole domain as 
 

   
1

j

i

x N
ij
k k

kx

f x dx w f x


                                          (18) 

 

The limits ix , jx  of Eq. (18) can be changed. When ia x  and jb x  Eq. (18) becomes a conventional integral (17). 

The GIQ weighting coefficients can be computed as 
 

ij
k jk ikw w w                                                 (19) 

The weighting coefficients for the integral are evaluated by inverting the matrix   1(1) 
W , which depends on the 

matrix of the weighting coefficients of the first order derivative [7, 17] and they can be calculated by the following 
relations 

       1 1 1 1 1
for , fori

ij ij ij ii
j i

x c
i j i j

x c x c
   

    
 

                              (20) 

 

 
a) b) 

Figure 6: a) Static analysis for single element structural components varying the number of points N  for a Membrane, a KL plate with 
 -points ( 510 ) and a RM plate using PDQ basis functions and Che-Gau-Lob grid distribution. b) Static analysis for structural 
components varying the number of elements en  with 7N   for a Membrane and a RM plate using PDQ basis functions and Leg-
Gau grid distribution. 

 

   
a) b) 

Figure 7: a) Dynamic discrete spectra for single element structural components with 31N   for a Membrane, a KL plate with  -
points ( 510 ) and a RM plate using PDQ basis functions and Che-Gau-Lob grid distribution. b) Dynamic discrete spectra for various 
structural components with 7N   and 64en   for a Membrane and a RM plate using PDQ basis functions and Leg-Gau grid 
distribution. 
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It is important to note that c  is an arbitrary constant and can be set equal to 1010Nc x    in order to obtain stable and 
accurate results. It must be pointed out that in the applications, the coordinate transformation from an interval 

 1,k Nc d      to another one  1,k Nx a x b x    should be defined, especially when different basis functions 

are used for the definitions of the weighting coefficients. Thus, the transformation of the GIQ weighting coefficients 1N
kw  

allows to switch from the interval  ,c d  to a generic one  ,a b . Recalling Eq. (5), the following relation can be written 
 

     

   

1

1

1 1 1 1

1 1

where

b d N
N

k k
ka c

N N
N N N N

k k k k k k
k k

b a b a b a b a
f x dx f c a d w f c a

d c d c d c d c

b a b a b a
w f c a w f x w w

d c d c d c

  





 

                     

           

 

 



 

          (21) 

 

It is noted that 1N
kw  are the weighting coefficients in the shifted interval  ,c d  and the 1N

kw  are the ones in the physical 

interval  ,a b . 

 
 

 

APPLICATIONS AND RESULTS 
 

n the present section the static and dynamic behaviors of 1D and 2D structural components, summarized in Tab. 3 
and 4, are reported. In all the computations an isotropic material with elastic modulus 210 GPaE  , Poisson ratio 

0.3   and density 37800 kg/m   has been considered. The one-dimensional problems (Rod, EB and Tim 
beams) have a length 2 mL   and a squared cross section / .20 0 1 m  b h L . The two-dimensional applications 
(Membrane, KL and RM plates) are squared with .., the membrane has a constant tension 1 NS  , the KL plate has a 
thickness 0.01 mh   and the RM plate has a thickness 0.08 mh  . In all the static calculations the uniform applied load 
for both 1D and 2D problems is taken equal to 100 Paq  . The convergence, stability and reliability of the SFEM 
varying the basis functions, collocation, number of grid points and number of elements are discussed in the following. 

The spacing of floating point numbers, due to the machine in use, is 52 162 10CPU    . The static and dynamic 
convergence and stability of Rods, Euler-Bernoulli (EB) and Timoshenko (Tim) beams are shown. For the present studies 
the basis functions, the grid point distributions, the number of points in each domain and the number of elements for the 
domain decomposition can be selected. The EB beam has the additional parameter given by the  -points location. The 
authors defined a new way of inserting the  -points other than the classic one [9, 12]. This new approach consists in 
adding the  -points as functions of the first and third (last and two-before the last) points. The  -points location is 
indicated in brackets “( )”. As far as the classic  -points technique is concerned, the extra points locations are directly 
reported as ( 510 ), whereas for the second approach the distance between the first and the third points is indicated. For 
instance, if (1/2) is used the  -points are the mid-points of the first and the third ones. In the following applications the 
GDQ method based on PDQ basis functions is considered. The reader can find the complete nomenclature of the grid 
point locations in Tab. 2. The one dimensional tests are divided into static and dynamic analysis. For the static 
benchmarks, the L2-norm of the absolute error of the displacement field is taken into account, since comparing a 
displacement of a single point of the domain can rise numerical instabilities. For the dynamic cases, the discrete spectra 
and the relative error on the first natural frequency will be shown in the following. Fig. 1a shows the L2-norm of the 
absolute error of the displacement for several structural elements composed of a single finite element varying the number 
of points N . The error given by the EB beam model is higher than the one exhibited by the Rod and Tim beam, because 
extra points have to be added in order to enforce the boundary conditions. The Che-Gau-Lob grid distribution is chosen 
within PDQ basis functions. For the EB beam model  -points are taken as (1/2), showing the best accuracy with respect 
to the classic value ( 510 ). The present method has been demonstrated to be stable even for 151N  . Fig. 1b studies the 
accuracy of the domain decomposition by varying the number of elements with 7N   in each element. The same basis 
functions and grid distribution of the previous case was used. Increasing the number of grid points or the elements, the 
same trends are obtained when Fig. 2a and 1b are compared. In the following the free vibration problems of the Rod, EB 
and Tim beams are reported in Fig. 2b, 3, 4a. In the computations dN  represents the total number of degrees of freedom 

I 
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and mn  indicates the mode number which is plotted in the discrete spectra. It is remarked that  2d eN n N   for the 

Rod,  2 2d eN n N   for the Tim beam and  4d eN n N   for the EB beam. Moreover  2
2d eN n N   for the 

membrane,  2
3 2d eN n N   for the RM plate and  2

4d eN n N   for the KL plate. Fig. 2b and 3a illustrate the 
dynamic discrete spectra by following the same analyses of Fig. 1a and 1b. Firstly a single element of high degree 
( 151N  ) is investigated. Secondly the same structural elements are divided into 100en   of low degree ( 7N  ). The 
dynamic discrete spectra give a very close picture of the complete dynamic behavior given the total number of degrees of 
freedom. The percentage error with respect to the exact solution is plotted against the mode number. Globally in Fig. 2b, 
the accuracy is around 60% (for the Rod and the EB beam) and 50% (for Tim beam), when a single element is taken into 
account. However, it is uncommon to use a single element with many points in it. Thus, the SFEM approach is 
investigated in Fig. 3a where 100en   and 7N  . The  -points for the EB beam are taken as (1/2) and the global 
accuracy results to be good until 30% of the modes, whereas the other Rod and Tim beam models reach the 60% and 
40% respectively. These plots report some discrete jumps through the whole spectrum that were not investigated in the 
present paper. Hence, these aspects will be deeply exhibited in a following work. Finally the dynamic discrete spectra of 
the WFEM are represented in Fig. 3b for the Rod and the Tim beam. It can be noted that the curves start to detach from 
the horizontal line with respect to Fig. 3a where SFEM approach is presented. In fact, Rod and Tim beam are accurate 
until the 20% of the modes. Fig. 4a reports the convergence rate of the SFEM in the double logarithmic plot of the 
relative error of the first frequency versus the number of elements. 
In the study the degree of the approximating polynomials is 6 ( 7N  ) and the number of element varies from 1 to 100. 
PDQ basis functions and Leg-Gau grid distribution are taken into account. 
It is remarked that the Rod and the Tim beam have a rate of convergence higher than the EB beam due to the fact that 
fourth order differential equations need extra points for the imposition of the boundary conditions, hence 2 grid points 
(per boundary) are lost for the imposition of the boundary conditions. Furthermore, the maximum accuracy that can be 

reached by the Rod is around 1510  and the Tim beam is around 1210 , on the contrary the EB beam reaches 910 . For 
the sake of comparison, the interested reader can refer to the works [36, 37] where the free vibrations of Rods and EB 
beams are investigated within the Isogeometric Analysis (IGA). For instance Fig. 10-12 of reference [37] show the 
convergence rates of a Rod with different polynomial orders. As expected, the convergence rate changes from 1/4 to 1/8 
increasing the polynomial order. Nevertheless for all three cases the author shows only four points for the Rod 
convergence. In fact Fig. 10 and 11 consider 10en  , 20en  , 30en  , 40en  , whereas Fig. 12 5en  , 10en  , 15en  , 

20en  . The author is assuming that the minimum convergence is reached, hence no more elements are needed. 
Nevertheless, the machine error noise is never shown throughout the paper. Ultimately, it is noted that the results 
proposed by [37] are in perfect agreement with the ones presented by the authors in Fig. 4a. The only exception is given 

by EB beams with  -points, because a lower trend 1/6 occurs together with a lower accuracy 910 . The interested reader 
can find more details about the so-called round-off error in the book by Boyd [15]. In conclusion, Fig. 4b, 5a, 5b exhibit a 
summary of the Rod structure behavior using four different numerical approaches: SFEM, WFEM, SEM (Spectral 
Element Method) and FEM. The first solves the strong form and uses 1C  compatibility conditions, the second solves the 

weak form and uses 1C  compatibility conditions, the third and the fourth solve the weak form with 0C  continuity, but 
the former with a general polynomial degree (Lagrange polynomials) and the latter with well-known linear and quadratic 
functions. Fig. 4b shows that increasing the polynomial order inside each element the error increases. In fact the SFEM 
error with 7N   is higher than the FEM one with 2N  . Nevertheless, the maximum error is always below the machine 
working precision (black dashed line). A comparison in terms of dynamic discrete spectra in shown in Fig. 5a. It can be 
noticed that SFEM offers the best accuracy in terms of percentage of accurate modes and the maximum errors are always 
more limited than all the other techniques. Fig. 5b shows several convergence rates with respect to the first natural 
frequency. Obviously, increasing the polynomial degree the convergence rate passes from 1/2 to 1/10. Linear FEM 
( 2N  ) has the same trend (1/2) of the ones obtained by SFEM and WFEM with 3N   and 1C  continuity. The strong 
formulation requires a higher derivation order with respect to a variational or weak formulation. Considering the second 
order Rod problem, for a given basis function of order n  the strong form derives the approximate solution two times, 
whereas the weak form only one. Therefore, the strong form solution becomes of order 2n   and the weak form is 1n  . 

Moreover, since the 1C  continuity is considered in the strong form the boundary points are excluded from the 
computation due to the kinematic condensation. 
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Constants definition: 3 3
0 0 2, 5 6 , , 12, 12A bh k A A I h I bh I h         

Axially-loaded beam, Bar or Rod problem 

Static analysis Dynamic analysis 
2

2
0

d u
EA pb
dx

   
2

2
02

0
d U

EA bI U
dx

   

Boundary conditions 
Clamped-Clamped (CC) 

   0 0, 0u u L   
Clamped-Clamped (CC) 

   0 0, 0U U L   

Exact solutions 

   
2

pb
u x L x x

EA
   

0 02n n

n EA n EA
f

L bI L bI

     

Euler-Bernoulli (EB) beam 

Static analysis Dynamic analysis 
4

4
0

d w
EI qb
dx

   
4

2
04

0
d W

EI bI W
dx

   

Boundary conditions 
Simply Supported-Simply Supported (SS) 

       
2 2

2 2
0 0, 0 0, 0, 0

d w d w
w w L L

dx dx
     

Simply Supported-Simply Supported (SS) 

       
2 2

2 2
0 0, 0 0, 0, 0

d W d W
W W L L

dx dx
     

Exact solutions 

 
4 4 3

4 3
2

24

qbL x x x
w x

EI LL L

 
   

 
 

2 2 2

2 2
0 02n n

n EI n EI
f

bI bIL L

      

Timoshenko (Tim) beam 

Static analysis Dynamic analysis 
2

2

2

2

0

0

d w d
G qb

dxdx

d dw
EI G

dxdx



 

 
    
 

     
 

 

2
2

02

2
2

22

0

0

d W d
G bI W

dxdx

d dW
EI G bI

dxdx





 
    
 
        

 

 

Boundary conditions 

Clamped-Clamped (CC) 
       0 0, 0 0, 0, 0w w L L      

Simply Supported-Simply Supported (SS) 

       0 0, 0 0, 0, 0
d d

W W L L
dx dx

 
     

Exact solutions 

 

 

24 2 2 2

2 2

3 3 2

3 2

24 2

2 3
12

qbL x x qbL x x
w x

EI L G LL L

qbL x x x
x

EI LL L


   
      

   
 

   







 
2 2 4 4

2 2
2 4

0 0

, 1 ,
bI bIEI n EI n

P Q R
G G bI bIL L

  
     

  
 

 

Table 3: List of one dimensional static and dynamic exact solutions. 
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Constants definition:  3 2 3
0 0 212 1 , 5 6 , , 12Eh k Gh Gh I h I h           

Membrane (Mem) or Poisson problem 
Static analysis Dynamic analysis 

2 2

2 2
sin sin 0

w w x y
S q

x y a b

   
   

  
 2 2

2
02 2

0
W W

S I W
x y


  

   
  

 

Boundary conditions: Clamped (CCCC) 
       0, 0, ,0 0, , 0, , 0w y w x w a y w x b            0, 0, ,0 0, , 0, , 0W y W x W a y W x b     

Exact solutions 

 
2 2

4

, sin sin
1 1

q x y
w x y

a b
S

a b

 




              

 
2 2

0

1

2nm

n m S
f

a b I

       
   

 

Kirchhoff-Love (KL) thin plate problem 
Static analysis Dynamic analysis 

4 4 4

4 2 2 4
2 sin sin 0

w w w x y
q

x x y y a b

    
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Boundary conditions: Completely Simply-Supported (SSSS) 
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Reissner-Mindlin (RM) thick plate problem 
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Boundary conditions: Completely Simply-Supported (SSSS) 

       

       

       

       

0, , 0, 0, , 0, , 0, 0, , 0

, , 0, , , , , 0, , , 0

,0, 0, ,0, 0, 0, , 0, , 0

, , 0, , , 0, , , , , 0

yx
y

yx
y

y x
x

y x
x

w y t y t y t y t
x y

w a y t a y t a y t a y t
x y

w x t x t y t y t
y x

w x b t x b t x b t x b t
y x

  

  

  

  

 
    

  
 

    
  

 
    

  
 

    
  

 

       

       

       

       

0, 0, 0, 0, 0, 0, 0

, 0, , , 0, , 0

,0 0, ,0 0, 0, 0, 0

, 0, , 0, , , 0

x y
y

x
y y

y x
x

y x
x

W y y y y
x y

W a y a y a y a y
x y

W x x y y
y x

W x b x b x b x b
y x









  
     

  
 

     
  

  
     

  
  

     
  

 

Exact solutions 
2 2 2 2 2 2 2 2 2 2 2 2

11 12 13 22 23 332 2 2 2 2 2

1 1 1
, , , , ,

2 2 2

n m n m n m n m n m
s s s s s s

a b a b a b a b a b

              
                       

 

 

 

11

11 12 13

12 22 23 11

13 23 33

11

, sin sin

0 , cos sin

0
, sin cos

nm
x x
nm x
y
nm

y
y

x y
w x y w

a bs s s w q
x y

s s s x y
a b

s s s
x y

x y
a b

 

   
   


    

           
         



 
11 12 13 0

2
12 22 23 2

13 23 33 2

0 0 0

0 0 0
2

0 0 0

nm
x nm

nm nm nm
y
nm

s s s I W

s s s I f

s s s I




        
                  

                

 

 

Table 4: List of two dimensional static and dynamic exact solutions. 
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In conclusion, in order to have the same accuracy trend SFEM or WFEM with 1C  compatibility conditions should have a 

higher number of grid points with respect to SFEM or SEM with 0C  compatibility conditions. Remark that the first point 
of the curves in Fig. 5b refer to a single element mesh. The comparison between SFEM and the other weak methods is 
meaningless for this case because, excluding the boundary conditions, the SFEM has an 1n   order with respect to the 
others due to the strong formulation (second order derivatives with respect to first order ones). It should be also noted 
that not only SFEM and WFEM but also SEM has the increasing error machine effect when the maximum accuracy is 

reached (around 1210 ). Fig. 6-8 show some results related to the static and dynamic stability and accuracy of Membranes, 
Kirchhoff-Love (KL) and Reissner-Mindlin (RM) plates. Fig. 6a is analogous to Fig. 1a where the number of grid points 
N  varies from 5 to 31 using PDQ basis functions and Che-Gau-Lob grid distribution. The KL plate model is considered 

with  -points ( 510 ). Note that when 15N   the error is stable increasing the number of points (round-off plateau). 
Fig. 6b collects the static convergence behavior of a single domain decomposed into several regular elements (no mapping 
is involved). The number of grid points is fixed 7N   and the number of elements is variable 1, 4, 9, 16, 25, 36, 49, 64. 
For the present cases the PDQ basis functions and Leg-Gau grid distribution are considered. As expected the error 
decreases increasing the number of elements. The dynamic convergence of several structural components is shown in Fig. 
7 and 8. Fig. 7a shows the dynamic discrete spectra of the Membrane, the KL and the RM plates using PDQ basis 
functions and Che-Gau-Lob grid distribution with 31N   using a single element. The Membrane and KL plate calculate 
accurate modes until the 25% of total modes, whereas the RM plate gets 10% of accurate modes due to the comparison 
with a semi-analytical solution. An analogous plot using PDQ basis functions and Leg-Gau grid distribution with 7N   
and 64en   is shown in Fig. 7b for the Membrane and the RM plate. Due to the element decomposition the accuracy 
decreases both for the Membrane and the RM plate. However, the error is limited within the 5% for the 40% and 50% of 
the modes of the Membrane and the RM plate, respectively. 
In conclusion a comparison in terms of dynamic discrete spectra for structured and distorted meshes is presented in Fig. 8 
for the Membrane and RM plate, respectively. Different number of grid points is considered, in order to get the same 
number of degrees of freedom changing the number of elements. As expected the modes are more accurate when the 
mesh is structured, whereas a lower accuracy is observed when irregular meshes are considered. 
 

   
a) b) 

Figure 8: a) Dynamic discrete spectra using different meshes (structured and distorted) of a Membrane using PDQ basis functions and 
Leg-Gau grid distribution. b) Dynamic discrete spectra using different meshes (structured and distorted) of a RM plate using PDQ 
basis functions and Leg-Gau grid distribution. 
 
 
CONCLUSIONS AND REMARKS 
 

he present paper references the DQM and other methods that, according to the authors’ knowledge, represent 
similar techniques. The paper aims to present a general view on strong formulation methods. The main novelty of 
this manuscript is given by the presentation in several forms of the stability and accuracy of the SFEM technique 

when applied to simple 1D and 2D models and compared to exact solutions (or semi-analytical ones as far as RM plate is 
concerned). This work should help researchers, of the computational mechanics community, to understand the 
advantages and disadvantages of a strong formulation approach and, in particular, to the ones who are keen on weak (or 

T 
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variational) formulation based approaches. Although it seems that DQM has been widely developed for several 
engineering problems, some aspects are still in a developing stage (e.g. boundary conditions in a domain decomposition 
approach using 1C  conditions). In a future paper the authors want to expose in detail the boundary conditions 
implementation from the mathematical point of view, giving all the formulae in discrete form. Moreover, the numerical 
results will be compared to classical FEM and SEM solutions. 
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