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ABSTRACT. We illustrate a procedure based on the Magnus expansion for studying mechanical problems which 
lead to non-autonomous systems of linear ODE’s. The effectiveness of the Magnus method is enlighten by the 
analysis of a bifurcation problem in the framework of three-dimensional non-linear elasticity. In particular, for 
an isotropic compressible elastic tube subject to an azimuthal shear primary deformation we study the 
possibility of axially periodic twist-like bifurcations. The approximate matricant of the resulting differential 
problem and the first singular value of the bifurcating load corresponding to a non-trivial bifurcation are 
determined by employing a simplified version of the Magnus method, characterized by a truncation of the 
Magnus series after the second term.   
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INTRODUCTION  
 

n the framework of three-dimensional non-linear elasticity, a number of “small on large” bifurcation problems lead to 
the analysis of a system of linear second order ODE’s with varying coefficients. It is a common practice to reduce the 
system of linear second order ODE’s to a simpler non-autonomous first order linear ODE system. Nevertheless, the 

resulting differential system may be somewhat complex and only numerically tractable; thus, it is crucial to adopt an 
adequate strategy for obtaining an accurate numerical solution for determining the critical load and the corresponding 
bifurcation deformation field. For example, approximate expressions of the matricant of non-autonomous linear ODE 
systems, based either on the multiplicative integral of Volterra or on the truncated Peano expansion, have been recently 
proposed for bifurcation problems analyzed by means of the Stroh approach within the so-called sextic formalism [1-3]). 
In Section 2, we discuss an alternative numerical method – based on the Magnus expansion [4] – which furnishes an 
approximate exponential representations of the matricant of first order linear ODE systems. The Magnus expansion 
belongs to the so-called geometric numerical integrators, based on Lie-Group methods [5 -7] for appropriate references). 
To our knowledge, the applications of this method are not widespread in continuum mechanics, but it has been shown in 
[8] that for problems involving singularities, bifurcations and wave propagation the geometric numerical integrators may 
be useful and accurate. In particular, the Magnus expansion may be very efficient for a number of bifurcation analyses, 
since it leads to the determination of approximate solutions that preserve at any order of approximation the same 
qualitative properties of the exact (but unknown) solution; moreover, this method exhibits an improved accuracy with 
respect to other frequently used numerical schemes. 
As an application of the Magnus method, in An application of the Magnus method in solid mechanics: periodic twist-like deformations 
bifurcating from the azimuthal shear of a circular tube we investigate the possibility for a compressible hollow cylinder subject to 
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azimuthal shear to support axially periodic twist-like bifurcation modes similar to the Taylor-Couette axially periodic 
cellular patterns observed when the flow of a viscous fluid confined in the gap between two rotating concentric cylinders 
becomes unstable. Here, the hollow cylinder is made of a Levinson-Burgess isotropic compressible elastic material. By 
restricting our attention to a class of incremental displacements characterized by three unknown scalar functions of the 
radial coordinate and having an axial periodic structure, we then study the related incremental boundary-value problem. 
This leads to a somewhat complex non-autonomous homogeneous system of six first order linear ODE’s with 
homogeneous boundary conditions, whose analysis is performed by a numerical approach. We show that a procedure 
based on the Magnus method outlined in An overview of geometric numerical integrators with special reference to  the Magnus expansion 
reveals very effective either for approximating the matricant of the resulting differential problem or for determining the 
first singular value of the bifurcating load corresponding to a non-trivial twist-like solution.  
 
 
AN OVERVIEW OF GEOMETRIC NUMERICAL INTEGRATORS WITH SPECIAL REFERENCE TO  THE MAGNUS 

EXPANSION 
 

 number of problems in scientific and engineering areas, ranging from Quantum Mechanics, Optics, 
Electromagnetism and Molecular Physics to Control Theory and Bifurcation, require the resolution of systems of 
differential equations with varying coefficients. Besides some very special cases, for which a fundamental matrix 

solution is explicitly available, the analysis of the problem usually requires the construction of an approximate 
representation of the solution of the non-autonomous differential system. In the last decade, this issue has attracted many 
scientists and has also represented a field of intense research activity; in particular, recent studies have shown that in many 
cases the so-called geometric numerical integration methods may offer better approximation schemes compared to 
perturbative procedures or to standard numerical integrators.  
The Magnus method belongs to the class of geometric numerical integrators, based on Lie-Group methods (see [6, 7] for 
appropriate references), which, although not yet diffused in continuum mechanics, have recently found many applications 
in areas of molecular physics [9], electromagnetism [10] and celestial mechanics [11]. In this Section, we first give a brief 
overview of geometric numerical integrators and then we deal with the Magnus method as a particular case.  
Geometric numerical integration concerns the development of numerical approximations to the solution of an ODE 
system with the main goal of preserving at any order of approximation the qualitative properties of the exact (but 
unknown) solution and thereby of exhibiting an improved accuracy with respect to other numerical methods. Although 
such methods apply also for nonlinear matrix differential equations, for the purposes of bifurcation problems here we 
consider geometric numerical integrators based on the Magnus expansion for the special case of homogeneous non-
autonomous first order linear ODE systems of the form 
 

        6x6R R R ,     R 0,      0   Y A Y Y I        (1) 
 

where the unknown 6x6 matrix  RY , usually referred as the matricant of the Cauchy initial-value problem (1), is the 6-

dimensional identity matrix when the real independent variable R is equal to zero.  
Generally speaking, these new numerical approaches involve Lie-Group methods, which are based on Lie groups and 
their associated Lie algebras. We recall that a Lie group corresponds to a differential manifold which is endowed with a 
group structure; the corresponding Lie algebra, defined as the tangent space to the Lie group at the identity, is a linear 
space endowed with the Lie bracket commutation operation and a natural mapping. Since the unknown matricant of a 
first order ODE system like (1) must be an invertible 6x6 matrix with variable entries, the setting  for finding solutions of 
(1) is a 6x6 matrix Lie group. In this case, the above general definition of a Lie algebra implies that the 6x6 matrix  RA  
governing (1) is an element of a matrix Lie algebra. Moreover, in this setting the associated matrix Lie algebra is endowed 
with the matrix commutation law  
 

 ,  := A B AB BA           (2) 
 

where  ,  A B  is commonly called the matrix commutator. Finally, for these special matrix Lie groups the matrix exponential 
function plays the role of the natural mapping.  
We emphasize that in the theory of Lie groups the role of the exponential mapping is crucial. Indeed, within the context 
of differential geometry, the matrix exponential maps an element belonging to a matrix Lie algebra into an invertible 
matrix belonging to its corresponding Lie group; in other words, the exponential mapping allows to recapture the local 
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group structure from the corresponding Lie algebra. Thus, for a first order ODE system like (1), it is natural to attempt to 
construct the solution as a matrix exponential with exponent given by a matrix which belongs to the associated Lie 
algebra. This peculiarity of the exponential mapping probably inspired the idea developed by Magnus [4], who proposed 
to express the exponent by a matrix series expansion made of infinite terms, each of them belonging to the Lie algebra 
corresponding to the Lie group of the unknown matricant. 
In detail, with reference to the differential problem defined in (1) the Magnus method assumes the matricant to be of 
exponential form with the exponent given by the following  series expansion, called the Magnus expansion: 
 

           6x6 k
k=1

R exp R 0 ,      0 ,       R R


     Y Y O        (3) 

 

Here we do not report the analytical procedures for determining the terms of the series expansion in (3). We address the 
reader to the seminal paper [5] where, in view of (1) and (3), and according to the notions of the first derivative of a 
matrix exponential map and of its inverse (see formulae (33) and (38) in [5]), it is clearly showed how it is possible to 
construct all the terms of the Magnus series. For our purposes, we report here only the first two terms of the series:  

 

         
1R R

 1 1 1  2 1 1 2 2
0 0 0

1
R d ,      R d ,   d

2



           A A A      (4) 

 

where [. , .] is the matrix commutator (2) and  A is the governing matrix of (1). Notice that each of the remaining terms 

(here not reported) contains nested matrix commutators of the form (2) involving the matrix operator  RA . It is worth 
to note that only if the commutative condition  
 

       1 2 2 1 1 2R R R R    for each  R , RA A A A       (5) 
 

holds, then, in view of (3), (1) and (4), the matricant of (1) takes the exponential form  
 

   
R

0

R exp  d
 

   
  
Y A          (6) 

 

which is analogous to the classical exponential solution for a scalar linear ODE. Clearly, (6) yields the solution of (1) if the 
entries of the matrix A  governing (1) are independent of R. Obviously, (5) holds only in special cases because the 
matrices in general do not commute (this is closely related to the structure of the commutation law (2) which characterizes 
matrix Lie algebras).  
A crucial aspect of the Magnus method related to its pertinence when seeking approximate solutions of differential 
problems like (1) emerges from the analysis of (3) and (4). By the above discussion, we recall that the matrix  RA  in (1) 
belongs to a matrix Lie algebra for all R; thus, in view of (4) we see that any term of the Magnus expansion belongs to the 
same Lie algebra. This implies that any truncation of the Magnus series will also belong to the same Lie algebra and 
therefore the exponential map of any truncation will necessarily stay in the corresponding Lie group. This is basically the 
main reason why an approximated solution obtained by truncating the Magnus expansion at any order preserves the same 
qualitative features of the exact solution. 
Another major issue concerns the conditions on the matrix  RA which guarantee the convergence of the Magnus series. 
This problem has been studied in [12], where it is shown that a sufficient condition for the local convergence of the 
Magnus series in a certain interval  20, R  is given by : 
 

 
2R

2
0

R dR   A           (7) 

 

where the integrand function in (7) is the spectral norm of  RA , i.e., the square root of the maximum eigenvalue of the 

product    TR RA A . Moreover, the fulfilment of the inequality (7) determines the range of the independent variable R 

for which it is possible to write the solution in the form (3). However, in many applicative cases it happens that the 
convergence condition (7) does not hold for the whole integration interval  20, R . In these cases, as usual for numerical 
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integration methods, it is common dividing the interval  20,R  into N subintervals  i+1 iR , R  such that the Magnus 

series converges in each of them. Given such a subinterval  i+1 iR , R , in view of (3) we may write: 
 

      i+1 i+1 iR exp R  RY Y         (8) 
 

wherein  i+1R  is expressed by the infinite Magnus series. Consequently, the matricant of (1) evaluated on the whole 

domain of interest  20, R takes the form 
 

    
N

2 i+1
i=1

R exp R
 

  
 
Y           (9) 

 

As it usually occurs when constructing approximate solutions, a crucial issue is that of choosing an appropriate order of 
truncation for  i+1R  which guarantees a suitable level of accuracy. To this aim, we recall the efficient procedure 

suggested in [7], which may be summarized in the following three steps: first, the series  i+1R  is truncated at a suitable 

order in each subinterval wherein the convergence is guaranteed. Then, the integrals appearing in each truncated series are 
approximated by appropriate quadrature rules. Finally, the exponential of the matrix  i+1R is evaluated. The qualified 

literature on this issue contains a number of proposals which correlate the level of accuracy of the method to the order of 
truncation of the Magnus series. We recall the paper [6] for an overview on this problem. 
Finally, the accurate calculation of the exponential of a matrix is still an open problem, as one may infer from the paper 
[13]. In the spirit of geometric numerical integration methods, the consequence of an inaccurate computation of the 
exponential matrix due, for example, by the replacement of the exponential map with one of its analytic (for example 
rational) approximants may lead to a solution not belonging to the desired Lie group, thus rendering the main advantages 
of geometric numerical integration ineffective. Here, we report two references on this issue, namely the splitting method 
proposed in [14] and the scaling and squaring with a Padè approximation method summarized in [13]. Notice that the 
command MatrixExp of the widely used software Mathematica employs the Padè approximation method for the 
calculation of the exponential matrix.  
We conclude by observing that the non-trivial evaluation of the exponential matrix may be circumvented when the 
unknown matrix of a differential problem belongs to special Lie groups. One of these cases involves a group commonly 
occurring in mechanical problems, namely the orthogonal group, that is the group of 3x3 matrices Q  such that 

T
3x3.QQ I  Unlike many other Lie-group solvers, they do not require the evaluation of matrix exponentials because, as 

outlined in [15], the back translation from the Lie algebra to the corresponding Lie group may be obtained by using the 
Cayley transform.  
 
 
AN APPLICATION OF THE MAGNUS METHOD IN SOLID MECHANICS: PERIODIC TWIST-LIKE DEFORMATIONS 

BIFURCATING FROM THE AZIMUTHAL SHEAR OF A CIRCULAR TUBE 
 

n the present section, we introduce a bifurcation problem set within the context of the nonlinear theory of elastic 
solids. In particular, the last part of the following analysis contains an explicit application of the Magnus method 
based on the procedure outlined in the previous section.  

 
The fundamental azimuthal shear equilibrium deformation 
We consider a homogeneous, isotropic, compressible, elastic tube which occupies the region  
 

  1 2R, , Z   0 < R  R R ,   0   2 ,   0  Z H               (10) 
 

in its natural reference configuration.  R, , Z  denote the cylindrical coordinate of a point X in a cylindrical coordinate 

system with orthonormal basis  R Z, , e e e . The boundary of   is divided into two disjoint complementary parts: 
 

     ,     1 1 2 2R, , Z  R = R  or R = R R, , Z  Z = 0 or Z = H             (11) 
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A deformation        :    = r, , z  R, , Z    f X x f X f   of   is assumed to be a smooth function with 

gradient    : F X f X . Since the tube is elastic and isotropic, the general form of the strain energy function is given by 

   W W I , II , IIIF B B B , where 
 

        
22 2 22 T1 1

I tr ,    II tr tr tr ,    III det det
2 2

           
 

B F F B B F F FF B FB B B  (12) 

 

are the orthogonal principal invariants of T :  B F F ; thus, the Piola stress takes the form 
 

      T
1 2 3 DW W  W I W  III  2 2 2     S F F F F BF FB B      (13) 

 

with  
 

1 2 3
W W W

W : , W : , W :
I II III

  
  
  B B B

        (14) 

 

We assume that the inner cylinder is kept fixed, whereas the outer is subject to a uniform angular displacement 0   
around its axis. On the bases of   only tangential displacements are admitted. This leads to the following mixed 
boundary-value problem: 
 

 Div  = in S 0F            (15) 
 

  
 

  

  

1

R
2 2

1

Z

1
2 2

1 2,

0                       at R = R
 = 

R cos 1     at R = R

0               at R = R
 = on 

R sin     at R = R

 = 0                  at R = R R



  
 

  


 



f X X e

f X X e

f X X e

       (16)  

 

      2 = 0,   = on      f X X e S e e 0F        (17) 
 

For the equilibrium problem (15)-(17), we consider the possibility of an azimuthal shear deformation f defined by  
 

 r R,        R ,      z Z               (18) 
 

where  , the angular displacement field, is assumed to be a smooth function satisfying  
 

   1 2R 0,      R 0        1on           (19) 
 

Consequently, in view of (18) we have 
 

    2 2
R r rR R  ,      R R                    I e I F e B e e e e e e    (20) 

 

where the prime denotes differentiation with respect to R and  r z, , e ee  is the deformed cylindrical orthonormal basis 

at  r, , z . Notice that the azimuthal shear is an isochoric deformation whose principal invariants (12) are given by 
 

2 2 ,    I II 3 R II 1I     B B B          (21) 
 

Moreover, (18) trivially satisfies the displacement boundary conditions (16)-(17)1 and, in view of (13) and (20), it is easily 
seen that also the traction boundary condition (17)2 holds.  
It remains to study the equilibrium field Eq. (15). The explicitly evaluation of (15) by means of (13) and (20) yields an 
over-determined system of two ODE for the single unknown function  R . In particular, here we consider the class C2 

Levinson-Burgess strain energy function  
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           21 2 1 2= 
1 4 1

I 3 1 J 3 2 1 2 III 1 2 III 1
2 1 2

W
                    

F B B B B  (22) 

 

where and are the referential shear modulus and referential Poisson’s ratio, respectively, and  0,  1  is a 
dimensionless material parameter. For the constitutive class (22), the Piola stress takes the form 
 

       1 2 1 2-1 -T -T4 1
 1 1 2 2 III 1 III  

1 2

                       
 B BS F F B F F    (23) 

 

By following a result contained in [16], it is possible to generate classes of strain energy functions such that the azimuthal 
shear satisfies both the two equilibrium ODE; in particular, for the present case of a Levinson-Burgess material, 
deformations of the form (18) are allowed only if the following condition on the material parameters holds: 
 

3

4
              (24) 

 

Finally, in view of (23), (19)-(21) and (24), after a non-trivial calculation we obtain from (15) a single ODE, whose solution 
is 

     2 2 2 2 2 2
2 1 1 2R R R R R R

1
R,  


               (25) 

 
Periodic twist-like bifurcations  
We now consider the possibility of deformations which bifurcate from the primary equilibrium pure circular shear (18) as 
the loading parameter (angle)   increases from 0 (natural state). A condition (only necessary) for the occurrence of a local 
branch of bifurcating solutions at a fixed   is the existence of a non-trivial solution of the homogeneous linearized 
equilibrium problem which corresponds to an adjacent equilibrium state.  
Such solutions superposed to the primary azimuthal shear must satisfy the adjacent equilibrium Eq. (26) and the 
incremental boundary conditions (27)-(28), obtained by linearizing (15)-(17) around the fundamental deformation 

 x f X , which is conveniently assumed as the independent variable: 
 

    gradr, div    in  0 uF          (26) 
 

1   on u 0             (27) 
 

   gradr, z 2z z= 0,   = on  u e e e 0 uF        (28) 
 

In particular,   3: u x   represents an incremental displacement field, “div” and “grad” are the divergence and 

gradient operators with respect to x, respectively, and   is the fourth-order instantaneous elasticity tensor, given by: 
 

          r, r, r, r, 2 T:  D    ,        W   Lin       
   HH HF F F F     (29) 

 

For the constitutive class (22), it follows from (29), (20)-(21) and (24) that  
 

   
      
      

r, 

T T1 1

T

grad  

1
grad grad grad 

4

3 2 1
grad grad grad 

4 1 2 2

 

 

       
 

      





u B B u u

u B I u I u


 


 uF    (30) 

 

where B  is given by (20)2. We now restrict our analysis to the class  
 

     

   

3
r 1 2 z 3

1 2

 :

:  u v r cos  z,   u v r cos  z,   u v r sin  z,

n ,   n 0,  1,  2, ..,     r r       
H





       
 
      
 

u

u u



0
�



    (31) 
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of periodic bifurcating displacements which are reminiscent of the instability patterns observed in the classical Taylor-
Couette shear flow of viscous fluids. A more detailed discussions on such a choice, together with an exhaustive analysis of 
problems closely related to the one here presented, are developed in [17], [18]; in particular, in [17] one may also find 
stability issues based on [19] and partly on [20]. This allows us to skip here the description of certain analytical 
developments, for which we refer to the works above mentioned. Notice that (31) models the occurrence of an axially 
periodic cellular pattern in the gap between the inner and outer cylinders (n represents the number of possibly forming 
cells in the axial direction); in particular, inside each of the n possible forming cells, (31) describes a twist-like displacement 
perpendicular to the e -direction of primary annular shear, so that the vector lines of the incremental displacement u are 
similar to the streamlines of the twisting Taylor-like effects for fluids. 
We easily check from (31) that the displacement incremental boundary condition (28)1 trivially holds, whereas (27) holds 
provided the smooth scalar functions  1v r ,  2v r ,  3v r  for r in  1 2R ,  R  are such that  
 

                   1 1 1 1 2 2 21 2 3 2 3 21r : r r r rv ,  v ,  v v ,  v ,  v: r r r 0 0,  ,  0    v v 0   (32) 
 

For what concerns the traction boundary condition (28)2 and the field Eq. (26), we first observe by (31) that   
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  (33) 

 

and by (20)2 that z z B e e ; thus, in view of (30)-(31), condition (28)2 immediately holds.  
Finally, by evaluating the divergence of (30) with the aid of (20)2 and (33), after some non-trivial calculation and also by 
employing separation of variables allowed by the choice (31) of the displacement field, we reduce the partial differential 
problem (26)-(28) to the following system of three homogeneous second-order ODE (see also (32)):  
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where  1 2 3v ,  : v ,  vv (we have omitted the dependence on r) and  
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are non-constant matrices determined by the components    ijhk h k i j hkij:    e e e e    of the symmetric fourth-

order tensor   in the coordinate system (r, , z). Here, we do not report the explicit expression of such components, 
which may be obtained by (30), (20)2 and (26). We only observe that  r, P and  r, , Q  are symmetric, since   is 

symmetric; moreover, for the constitutive class (22)  r, P is always invertible. 

The latter property of  r, P  is crucial. Indeed, a common practice is that of transforming the set of three linear second 

order ordinary differential equations like (34) into a system of six linear first order ordinary differential equations, for 
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which well-known existence theorems and procedures for constructing the solutions are available in the literature. With 
this aim, once introduced the 3x3 matrices  
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we rewrite (34) in the form 
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Then, by setting  
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we easily see that (37) is equivalent to the linear homogeneous first order ODE boundary-value problem 
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Observe that in the notation above we have dropped the dependence of the basic parameters (the inner and outer radii, 
the height of the tube, the material moduli and the angular displacement  ), usually assumed as prescribed. We only 
maintain explicit the dependence on r, in order to emphasize that the linear ODE system is non-autonomous.  
Now, by following elementary results on systems of linear ODE's, we may write a solution of (39) in the form (see (38)1 

and (37)2) 
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where  1ry is an unknown constant vector and 
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is a particular fundamental matrix solution for (39)1, usually called matricant. Then, substitution of (40) into (39)2 yields  
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which, in view of (38)3-4 , (41) and (40), is equivalent to the homogeneous system of three algebraic equations  
 

   2 2 1r r U v 0           (43) 
 

for which non-trivial solution  1rv 0   are possible if and only if  
 

 2 2det r 0U            (44) 
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Finally, a solution of the primary ODE problem (34) can be written in the following form  
 

     2 1r r rv U v           (45) 
 

which clearly satisfies the boundary conditions (34)2 (see (41) and (43)). 
The above analysis shows that the possibility of determining non-trivial solutions for the bifurcation differential problem 
(34) is strictly related to the knowledge of the 3x3 matrix  2 rU , which represents the “north-east” block of the 6x6 

matricant (41) of the Cauchy initial-value problem  
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Since (46) has the same structure of the Cauchy initial-value problem (1), in the following we illustrate a strategy based on 
the Magnus method for determining the solution of (46).  
 
A strategy for determining the bifurcating load through the Magnus method 
The theoretical preliminaries in An overview of geometric numerical integrators with special reference to  the Magnus expansion 
combined with the bifurcation analysis of Subsections The fundamental azimuthal shear equilibrium deformation - Periodic twist-like 
bifurcations  allow us to describe a strategy for determining the critical value cr of the primary angular displacement, that is 
the lowest value of the angle   for which the tube may support (during a loading process) a non-trivial twist-like 
bifurcation of the form (31) from the fundamental azimuthal shear deformation. The Magnus method is now the key 
ingredient for approximately determining the matricant of (46), whereas (44) plays the role of bifurcation condition.  
Following the steps outlined in the Section 2, we first fix the radii R1 and R2, the height H, the referential shear modulus 
 and the referential Poisson’s ratio   (recall that 3/ 4   by (24)). Then, we: 
- fix the number n of twisting cells in the axial direction (by (31) this is equivalent to fixing  ) starting from n =1; 
- fix the value of the loading parameter   starting from zero; 
- compute the matrices (35), which now depend only on r, and then compute  rA in (38) by means of (36); 

- divide the interval  1 2R , R  into N subintervals  i+1 ir , r such that the Magnus series converges in each of them 

(see the convergence condition (7)); 
- employ for simplicity a fourth-order method by truncating the Magnus series  i+1r after the second term in 

each subinterval (see (4)) and by approximating the integrals using a Gauss quadrature rule. This allow us to write  
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where  
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are two Gauss points in correspondence of which  rA and its employed linear approximation agree.  

- compute the matrix exponential of  i+1r using the function MatrixExp in the software Mathematica; 

- evaluate the matricant of (46) at the external radius r2 = R2 by (8) and (9); 
- compute the “north-east” block of the matricant at r2 = R2 , that is the 3x3 matrix  2 2rU ; 

- compute the determinant of  2 2rU and check if the bifurcation condition (44) holds.  

Following this procedure, we define n
cr  as the smallest value of   which satisfies the bifurcation condition (44) 

corresponding to the fixed value of n. Of course, when one repeats the above procedure by varying the number of 

possible axial cells, the corresponding critical load n
cr varies. We have performed a large number of computations which 

show that as n increases, the corresponding n
cr  determined by (44) decreases until a critical value of n above which (44) 
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definitively does not hold for any  . In correspondence, a load cr  corresponding to crn is determined, and this is the 
critical value of the circular angle of shear which allows for the occurrence of a non-trivial axial periodic deformation of 
the form (31).  
Fig. 1 reports the bifurcation curve for a referential shear modulus 1   MPa, referential Poisson’s ratio 0.25  , 

3/ 4   and H/R1=1. It shows the critical load cr as a function of the ratio 2 1R /R  between the outer and the inner 
radius of the tube. We may easily infer, as expected, that twist-like bifurcation may be more easily supported in thin tubes.  
 

 
Figure 1: cr vs. R2/R1, for  = 1,  = 3/4,  = 0.25, H/R1=1. 

 
 
CONCLUSIONS 
 

e have studied a bifurcation problem concerning the possibility of periodic twits-like deformations superposed 
to a primary azimuthal shear state for a Levinson-Burgess isotropic elastic tube. The procedure proposed for 
determining approximate solutions of the resulting non-autonomous systems of linear ODE’s is based on the 

Magnus method, which represents an innovative numerical scheme belonging to the more general class of geometric 
numerical integrators. We have the feeling that these new methods, already employed in many scientific areas,  may find 
interesting applications also in the field of continuum mechanics. In the future we are going to further explore the 
applicability and the advantages of the Magnus method by studying other bifurcation problems yielding non-autonomous 
ODE systems like, for example, a Taylor-Couette type bifurcation for a sheared incompressible annular tube modeled by 
an extended version of the Gent constitutive equation.  
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