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ABSTRACT. The aim of the present paper is to systematically investigate the accuracy of the so-called Modified 
Wöhler Curve Method (MWCM) in estimating high-cycle fatigue strength of plain and notched engineering 
materials damaged by in-service multiaxial load histories. In more detail, the MWCM, which is a bi-parametrical 
critical plane approach, postulates that initiation and Stage I propagation of fatigue cracks occur on those 
material planes experiencing the maximum shear stress amplitude (this being assumed to be always true 
independently from the degree of multiaxiality of the applied loading path). Further, the fatigue damage extent 
is hypothesised to depend also on the maximum stress perpendicular to the critical plane, the mean normal 
stress being corrected through the so-called mean stress sensitivity index (i.e., a material constant capable of 
quantifying the sensitivity of the assessed material to the presence of superimposed static stresses). In the 
present investigation, the overall accuracy of the MWCM in estimating high-cycle fatigue strength was checked 
through 704 endurance limits taken from the literature and generated, under multiaxial fatigue loading, by 
testing both plain and notched samples made of 71 different materials. Such a massive validation exercise 
allowed us to prove that the MWCM is highly accurate, resulting in 95% of the estimates falling within an error 
interval equal to ±15%. 
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INTRODUCTION 
 

ince the pioneering work done by Gough [1], over the last 60 years several researchers have made a big effort in 
order to devise sound criteria allowing high-cycle fatigue damage under multiaxial fatigue loading to be estimated 
accurately. As to the work that has been done so far, examination of the state of the art shows that the most 

important high-cycle fatigue criteria can be subdivided into the following three different groups: methods making use of 
the so-called microscopic approach [2, 3], fatigue assessment techniques based on the use of the stress invariants [4-6], 
and, finally, criteria taking full advantage of the classical critical plane concept [7-9]. Amongst the above different 
strategies, it is the author’s opinion that the most promising approaches are those based on the assumption that fatigue 
damage reaches its maximum value on that material plane (i.e., the so-called critical plane) experiencing the maximum 
shear stress amplitude [10]. According to the above firm belief, over the last decade we have made a big effort in order to 
systematically investigate the peculiarities of a bi-parametrical critical plane approach which is known as the Modified 
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Wöhler Curve Method (MWCM) [11]. In more detail, initially we checked the accuracy and reliability of such a criterion in 
estimating both high-cycle fatigue damage [12, 13] and lifetime [14, 15] of plain engineering materials subjected to 
multiaxial fatigue loading. Subsequently, attention has been focused on the problem of estimating multiaxial fatigue 
damage in the presence of stress concentration phenomena [16-19], by also investigating the related problem of designing 
welded connections against multiaxial fatigue [20-24]. 
Recently, basing his investigation on several experimental results taken from the literature, Jan Papuga [25] has performed 
a systematic comparison amongst different criteria in order to select the most accurate one in estimating high-cycle fatigue 
damage in plain engineering materials subjected to multiaxial loading paths. According to his calculations, he has come to 
the conclusion that the use of the MWCM results in poor estimates, especially when superimposed static stresses are 
involved. In our opinion, such an erroneous conclusion has to be ascribed to the fact that Dr. Papuga has applied our 
approach in a wrong way, by systematically miscalculating the stress quantities relative to the critical planes. Accordingly, 
in the present paper the main features of the MWCM are initially reviewed by focusing attention mainly on the problem of 
determining the so-called mean stress sensitivity index. Subsequently, it is proven, through 704 experimental endurance 
limits generated by testing both plain and notched samples made of 71 different materials, that, when the MWCM is used 
correctly, it is capable of estimates falling mainly within an error interval of ±10%. 
 

 
FUNDAMENTALS OF THE MWCM 
 

he MWCM is a critical plane approach which estimates multiaxial fatigue damage through the maximum shear 
stress amplitude, a, as well as through the mean value, n,m, and the amplitude, n,a, of the stress perpendicular to 
the critical plane. According to the fatigue damage model the MWCM is based on [11], the critical plane is defined 

as that material plane experiencing the maximum shear stress amplitude, a. From a practical point of view, the combined 
effect of both a, n,m and n,a are taken into account simultaneously through the following stress index [13]: 
 

a

anmn
eff

m




 ,, 
             (1) 

 

In the above identity, mean stress sensitivity index m [13] is a material property to be determined experimentally whose 
main features will be investigated in the next section in great detail. As to ratio eff instead, thanks the way it is defined, 
such a stress index is seen to be sensitive not only to the presence of superimposed static stresses, but also to the degree 
of non-proportionality of the applied loading path [11]. 
Turning back to the MWCM, the way it estimates fatigue damage under multiaxial fatigue loading is schematically shown 
by the modified Wöhler diagram reported in Fig. 1a. The above log-log diagram plots the shear stress amplitude relative to 
the critical plane, a, against the number of cycles to failure, Nf. By performing a systematic reanalysis based on numerous 
experimental data [12, 14, 15], it was proven that, as index eff varies, different fatigue curves are obtained (Fig. 1a). In 
particular, it was observed that fatigue damage tends to increase as eff increases: this results in the fact that the 
corresponding fatigue curve tends to shift downward in the above diagram with increasing of eff (Fig. 1a). According to 
the classical log-log schematisation used to summarise fatigue data, the position and the negative inverse slope of any 
Modified Wöhler curve can unambiguously be defined through the following linear relationships [11, 12, 15]: 
 

   k             (2) 
 

  baf  Re             (3) 
 

In the above definitions, k(eff) is the negative inverse slope, while Ref(eff) is the reference shear stress amplitude 
extrapolated at NA cycles to failure (see Fig. 1a). Further, , , a and b are material constants to be determined 
experimentally. In particular, by remembering that eff is equal to unity under fully-reversed loading and to zero under 
torsional loading [11], constants a and b in Eq. (3) can be calculated directly as follows: 
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where A and A are the endurance limits extrapolated at NA cycles to failure under fully-reversed uniaxial and torsional 
fatigue loading, respectively. 
When our criterion is specifically used to estimate high-cycle fatigue damage, according to the MWCM’s philosophy, a 
material is at the endurance limit condition when the amplitude of the shear stress relative to the critical plane, a, equals 
the reference shear stress estimated, through Eq. (3), for the pertinent value of ratio eff, that is [11]: 
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
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
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 

2,           (6) 

 

If the above equation is plotted in a a vs. eff diagram (Fig. 1b), it is straightforward to see that, given the value of eff, 
fatigue breakage should not occur up to a number of cycles to failure equal to NA as long as the shear stress amplitude 
relative to the critical plane is below the limit curve determined according to the criterion itself.  
 

 
(a) 

 
(b) 

 

Figure 1: Modified Wöhler diagram (a) and adopted correction for the A,Ref vs. eff relationship (b). 
 
To conclude, it is worth observing that, as shown by the above chart, the reference shear stress to be used to estimate 
multiaxial fatigue damage is assumed to be constant and equal to Ref(lim) for eff larger than limit value lim [11, 13]. This 
correction, which plays a fundamental role in the overall accuracy of the MWCM, was introduced in light of the fact that, 
under large values of ratio eff, the predictions made by the MWCM were seen to become too conservative [26]. 
According to the experimental results due to Kaufman and Topper [27], such a high degree of conservatism was ascribed 
to the fact that, when micro/meso cracks are fully open, an increase of the normal mean stress does not result in a further 
increase of fatigue damage. Therefore, by taking full advantage of the intrinsic mathematical limit of Eq. (6), which 
becomes evident when our criterion is directly expressed in terms of a and n,max=n,a+n,m [11, 13], lim takes on the 
following value: 
 

AA

A



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
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DETERMINING THE MEAN STRESS SENSITIVITY INDEX 
 

n order to address the problem of estimating mean stress sensitivity index m, initially, it is useful to define the load 
ratio relative to the critical plane, RCP, as follows [13]: 
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where n,min and n,max denote the minimum and the maximum value of the stress perpendicular to the plane of maximum 
shear stress amplitude, respectively. 
In order to estimate mean stress sensitivity index m, assume now that endurance limits A and A are known from the 
experiments, so that, the only unknown material property in Eq. (6) is m itself. By observing now that both A and A are 
material fatigue properties generated under fully-reversed loading (i.e., RCP=-1), it is logical to argue that material constant 

m has to be estimated from a third endurance limit determined under a value of RCP larger than -1. Accordingly, if *
a , 

*
,mn and *

,an are the critical plane stress components referred to the above endurance limit condition, by rearranging Eq. 
(6), it is trivial to derive the following identity [11, 19]: 
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which allows m to be calculated directly. As to the expected values for m, it can be said that, since m quantifies the 
portion of the mean normal stress relative to the critical plane which effectively opens the micro/meso cracks by 
favouring their propagation [11], such a material fatigue property is expected to vary in the range 0-1: when m is equal to 
unity, the material being assessed is assumed to be fully sensitive to the mean stress perpendicular to the critical plane; on 
the contrary, an m value equal to zero implies that the investigated material is not sensitive at all to the presence of 
superimposed static tensile stresses. 
With regard to the estimation of the mean stress sensitivity index, it is not superfluous to notice here that, in situations of 
practical interest, the above material constant can easily be determined by directly using a uniaxial endurance limit 
generated under a load ratio, R=x,min/x,max (Fig. 2), larger than -1. In more detail, under axial or bending fatigue loading 
with superimposed static stress, it is straightforward to see that the relevant stress quantities relative to the critical plane 
take on the following values [11]: 
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where x,a and x,m are the amplitude and the mean value of the applied stress, respectively. 
 

 
 

Figure 2: Cylindrical specimen and adopted frame of reference. 
 
From a physical point of view, the meaning of mean stress sensitivity index m can be explained by taking full advantage of 
the outcomes summarised by Kaufman and Topper in Ref. [27]. In more detail, by performing an accurate experimental 
investigation they have observed that, when the mean stress perpendicular to the Stage I planes is larger than a certain 
material threshold value, an increase of the mean stress itself does not result in any further increase of fatigue damage. 
This experimental evidence was ascribed by Kaufman and Topper themselves to the fact that, in the presence of large 
values of the mean stress perpendicular to the growth direction, micro/meso shear cracks are already fully open, so that, 
the shearing forces are directly transmitted to the crack tips by favouring the Mode II growth. On the contrary, when the 
mean stress normal to the Stage I planes is lower than the above material threshold value, the effect of the shearing forces 
pushing the crack tips is reduced due to the interactions amongst the asperities characterising the two faces of the cracks 
themselves. Since the microstructure morphology varies from material to material by resulting in a different roughness of 
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the crack faces, it is logical to presume that the value of the mean stress sensitivity index changes as the microstructural 
features of the material being assessed vary. 
To conclude, it is worth observing that not only to estimate m correctly but also to apply the MWCCM properly, a multi-
parameter optimisation process has to be run to unambiguously determine the orientation of the critical plane [28]. As to 
such a tricky aspect of the multiaxial fatigue issue, it has to be said that this laborious modus operandi is a direct consequence 
of the classical fatigue damage model on which the MWCM is based [11, 29]. In fact, independently from the complexity 
of the time-variable stress state damaging the material point at which the stress analysis is performed, there always exist 
two or more material planes experiencing the maximum shear stress amplitude, so that, amongst all the potential critical 
planes, the one which has to be used to calculate mean stress sensitivity index m as well as to perform the fatigue 
assessment is the plane experiencing the largest value of the maximum normal stress. 
 
 
VALIDATION BY EXPERIMENTAL RESULTS 
 

n order to show the accuracy of the MWCM in estimating high-cycle fatigue strength under multiaxial fatigue 
loading, a systematic bibliographical investigation was carried out to select an appropriate set of fatigue results. In 
more detail, initially attention was focused on multiaxial endurance limits generated by testing un-notched samples. 

In the most general case, the applied loading paths included in-phase and out-of-phase situations (combined axial loading, 
bending, torsion and internal/external pressure) with and without superimposed static stresses, the applied stress 
components being defined as follows (see Fig. 2 for the adopted frame of reference): 
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
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        (11) 

 

In the above sinusoidal stress signals, subscript m and a denote the mean value and the amplitude of any stress 
components, respectively, x, y and xy are the angular velocities, whereas y,x and xy,x are the out-of-phase angles, both 
measured with respect to signal x(t). Further, also a number of results generated under the complex loading paths 
sketched in Fig. 3 were considered in the validation exercise discussed in the present section. Tab. 1 summarises the static 
and fatigue properties of the materials of which the unnotched samples tested under multiaxial fatigue loading were made. 
Tab. 2 instead lists the experimental values of mean stress sensitivity index m for those materials having m lower than 
unity. 
 

 
 

Figure 3: Investigated complex loading paths. 
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Material Reference A A UTS Loding 
Path [MPa] [MPa] [MPa] 

0.1% C steel (normalised) [1] 268.6 151.3 430.7 B-T 

0.4% C steel (normalised) [1] 331.9 206.9 648.4 B-T 

0.4% C steel (spheroidized) [1] 274.8 155.9 477.0 B-T 

0.9% C steel (pearlitic) [1] 352.0 240.8 847.5 B-T 

3% Ni steel [1] 342.7 205.3 526.4 B-T 

3/3.5% Ni steel [1] 444.7 267.1 722.5 B-T 

Cr-Va steel [1] 429.1 257.8 751.8 B-T 

3.5% NiCr steel (n. impact) [1] 540.3 352.0 895.3 B-T 

3.5% NiCr steel (l. impact) [1] 509.4 324.2 896.9 B-T 

NiCrMo steel (60-70 tons) [1] 602.1 337.7 1000.3 B-T 

NiCrMo steel (75-80 tons) [1] 660.7 342.7 1242.7 B-T 

NiCr steel [1] 772.3 452.3 1667.2 B-T 

SILAL cast iron [1] 240.8 219.2 240.9 B-T 

NICROSILAL cast iron [1] 253.2 211.5 256.8 B-T 

S65A Steel [30] 583.5 370.5 1000.8 B-T 

Cast alloy steel [30] 366.8 247.5 721.2 B-T 

CuCr cast iron [31] 251.0 198.6 445.4 B-T 

Inoculated cast iron [31] 177.9 157.2 321.3 B-T 

NiCr cast iron [31] 146.2 122.7 259.2 B-T 

CrMo steel (Solid samples) [32] 713.2 425.3 946.5 B-T 

CrMo steel (Hollow samples) [32] 688.9 412.8 946.5 B-T 

CrMo steel [32] 509.0 306.9 954.0 B-T 

CrMo steel [32] 589.6 367.6 944.8 B-T 

CrMo steel [32] 593.3 350.7 944.8 B-T 

CrMo steel [32] 628.3 366.6 954.0 B-T 

NiCrMo steel S81 [32] 589.7 331.9 1103.8 B-T 

NiCrMoVa steel [32] 660.7 342.7 1242.7 B-T 

CrMoVa steel DTD551 [32] 667.8 398.3 1397.1 B-T 

CrMoVa steel DTD551 [32] 659.9 386.5 1397.1 B-T 

CrMoVa steel DTD551 [32] 706.1 412.5 1368.7 B-T 

CrMoVa steel DTD551 [32] 737.7 447.4 1368.7 B-T 

NiCr steel (Solid samples) [32] 666.7 369.7 1389.4 B-T 

NiCr steel (Hollow samples) [32] 653.2 339.6 1389.4 B-T 

NiCr steel [32] 771.9 452.3 1667.2 B-T 

SAE 4340 [33] 462.0 286.0 - B-T 

Brass [7] 83.4 73.6 319.8 B-T 

High-strength steel [7] 461.1 274.7 809.3 B-T 

Nodular Cast Iron [7] 196.2 186.4 476.8 B-T 

Rolled Steel (Block D) [7] 215.8 137.3 - B-T 

0.34% C steel [34] 378.0 218.0 - B-T 

Carbon Steel [35] 261.0 160.0 - B-T 
 

Table 1: (Caption on the next page). 
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Material Reference A A UTS Loding 
Path [MPa] [MPa] [MPa] 

30NCD16 (Batch 1) [36] 586.0 405.0 1160.0 B-T 

30NCD16 (Batch 2) [37] 660.0 410.0 1160.0 B-T 

Cast Iron [38] 151.0 92.0 - IP-T 

0.35% C Steel [39] 216.0 142.0 559.0 IEP-Ax 

Mild Steel [40] 235.4 137.3 375.0 B-T

Hard Steel [40] 313.9 196.2 680.0 B-T 

3% C Cast Iron  [40] 96.1 91.2 180.9 B-T

Duraluminium [40] 156.0 100.0 433.0 B-T 

34Cr4 [41] 410.0 256.0 795.0 B-T 

42CrMo4 [42] 398.0 267.0 1025.0 B-T 

St35 [43] 206.0 123.0 395.0 IP-Ax-T 

St35 [44] 230.0 130.0 - IP-Ax 

En24T [45] 405.0 270.0 850.0 IP-Ax 

XC18 [46] 332.0 186.0 520.0 B-T 

34Cr4 [41] 343.0 204.0 710.0 IP-B-T 

25CrMo4 [47] 340.0 228.0 780.0 B-T 

Fe-Cu [48] 319.0 220.0 - B-T 

25CrMo4 [49] 361.0 228.0 780.0 IP-B-T 

Grey Cast Iron [50] 164.0 124.7 278.8 B-T

CK45 [51] 423.0 287.0 - B-T 

FGS 800-2 [52] 294.0 220.0 815.0 B-T 

FeE 460 [53] 272.0 174.0 670.0 Ax-T 

FGS 700/2 [54] 294.0 218.0 750.0 B-T 

Ti-6Al-4V [55] 652.0 411.0 1090.0 B-T 

High strength steel [56] 630.0 364.0 - B-T 

High strength steel [56] 298.0* 172.0 - B-T 

High strength steel [56] 320.0 184.7* - B-T 

R7T (Axial) [57] 514.4* 297.0 820-940 Ax-T 

R7T (Circum.) [57] 537.0* 310.0 820-940 Ax-T 

42CrMo4 [58] 525.7 336.3 996.0 Ax-T 

39NiCrMo3 [59] 367.5 265.0 856 Ax-T

SAE 52100 [60] 866.0 540.0 2467.0 Ax-T 

30NCD16 [61] 690.0 428.0 1200.0 B-T 

GGG60 [62] 275.0 249.0 815.0 B-T 

St60 [63] 294.0 176.0 765.0 IP-Ax 

76S-T61 [64] 217.9 143.4 419.3 B-T 

76S-T61 [64] 188.3 119.3 419.3 B-T 

76S-T61 [64] 170.3 109.7 419.3 B-T 

25CrMo4  [65] 340.0 228.0 801.0 IP-Ax-T 

C35N [66] 250.0 150.0 550.0 Ax-T 

C35N [67] 189.0 150.0 533.0 Ax-T 
 

Table 1: Mechanical properties of the unnotched materials, where: *Estimated according to von Mises, Ax=axial loading, B=bending, 
T=torsion, I(E)P=internal (external) pressure. 
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Material Reference m 

S65A Steel [30] 0.41 
42CrMo4 [42] 0.35 

34Cr4 [41] 0.36 

30NCD16 (Batch 2) [37] 0.16 

CK45 [51] 0.31 

St35 [44] 0.29 
30NCD16 [61] 0.64 
St60 [63] 0.38
25CrMo4  [65] 0.89 
En3B [19] 0.22 

 

Table 2: Values of the mean stress sensitivity index for those materials having m lower than unity. 
 
The experimental fully-reversed torsional endurance limit, A, vs. equivalent shear stress, A,eq, diagram reported in Fig. 4 
summarises the accuracy of the MWCM in estimating the multiaxial endurance limits experimentally determined by testing 
unnotched samples made of 65 different metallic materials, the error being calculated as follows [68]: 
 

100[%] , 



A

AeqAError



         (12) 

 

The above diagram makes it evident that the MWCM is highly accurate in estimating high-cycle fatigue strength of plain 
engineering materials subjected to multiaxial fatigue loading, resulting in 95% of the estimates falling within an error 
interval equal to ±15%. 
 

 
Figure 4: MWCM’s accuracy in estimating high cycle fatigue strength of plain metallic materials subjected to multiaxial loading paths, 
where IPh=in-phase, OoPh=out-of-phase, ZMS=zero mean stress, N-ZMS=non-zero mean stress, DF=different frequences, 
CLP=complex loading paths (see Fig. 3). 
 
In order to further investigate the accuracy of our multiaxial fatigue criterion, the MWCM was subsequently used, in terms 
of nominal stresses, to estimate high-cycle fatigue strength of notched samples subjected to in-phase and out-of-phase 
biaxial loading, by also considering situations involving non-zero mean stresses. Tab. 2 summarises the fully-reversed 
nominal uniaxial, An, and torsional, An, endurance limits of the considered notched samples, together with a brief 
description of the investigated geometrical features (see also Tab. 3 for the values of mean stress sensitivity index m). As 
to the notch endurance limits summarised in Tab. 2, it is worth observing that, since the uniaxial and torsional ones were 
not available for the notched samples of En3B [19], they have been estimated from the corresponding fatigue strength 
reduction factor, Kf, calculated according to Peterson’s rule [73, 74]. 
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The accuracy of the MWCM when applied in terms of nominal stresses in estimating high-cycle fatigue strength of 
notched components is summarised in the An vs. A,eq diagram reported in Fig. 5: the above chart makes it evident that 
the systematic use of our criterion resulted in 92% of the predictions falling within an error interval equal to ±15%. 
 

Material Ref. An An Type of notched specimen 
[MPa] [MPa] 

0.4% C Steel (Normalized) [1] 179.1 176.0 V-notched cylindrical bar 

3% Ni steel [1] 209.9 151.3 V-notched cylindrical bar 

3/3.5% Ni steel [1] 302.6 183.7 V-notched cylindrical bar 

Cr-Va steel [1] 216.1 160.6 V-notched cylindrical bar 

3.5% NiCr steel (n. impact) [1] 268.6 236.2 V-notched cylindrical bar 

3.5% NiCr steel (l. impact) [1] 247.0 182.2 V-notched cylindrical bar 

NiCrMo steel (75-80 tons) [1] 271.7 240.8 V-notched cylindrical bar 

CrMo steel [32] 450.9 295.5 Cylindrical hollow sample with oil hole 

CrMo steel [32] 223.4 162.1 Cylindrical hollow sample with oil hole 

CrMo steel [32] 424.7 305.5 Cylindrical hollow sample with oil hole 

CrMo steel [32] 423.4 300.3 Cylindrical hollow sample with oil hole 

CrMo steel [32] 423.4 288.4 Cylindrical hollow sample with oil hole 

NiCrMoVa steel [32] 271.7 240.8 V-notched cylindrical bar 

NiCrMoVa steel [32] 288.7 211.5 Cylindrical hollow sample with oil hole 

CrMoVa steel DTD551 [32] 300.7 235.4 Cylindrical hollow sample with oil hole 

CrMoVa steel DTD551 [32] 297.8 220.9 Cylindrical hollow sample with oil hole 

CrMoVa steel DTD551 [32] 471.3 354.6 Cylindrical hollow sample with oil hole 

CrMoVa steel DTD551 [32] 448.1 354.9 Cylindrical hollow sample with oil hole 

NiCr steel [32] 312.5 225.5 Cylindrical hollow sample with oil hole 

S65A steel [30] 259.3 180.6 Cylindrical hollow sample with oil hole 

S65A steel [30] 347.3 270.1 Cylindrical shaft with fillet 

S65A steel [30] 563.5 185.2 Hollow specimens with 6 deep splines 

16MnR [69] 96.1 120.7 V-notched cylindrical bar 

16MnR [69] 174.3 155.3 V-notched cylindrical bar 

SAE 1045 [70] 188.6 156.6 Cylindrical shaft with fillet 

C40 [71] 117.8 152.8 V-notched cylindrical bar 

CK45 [51] 311.8 220.4 Cylindrical shaft with fillet 

Low Carbon Steel [72] 66.9 122.7 V-notched cylindrical bar 

Low Carbon Steel [72] 95.3 156.4 V-notched cylindrical bar 

En3B* [19] 142.3 157.8 V-notched cylindrical bar 

En3B* [19] 204.7 211.3 V-notched cylindrical bar 

En3B* [19] 268.1 243.9 V-notched cylindrical bar 

SAE 52100 [60] 631.0 539.0 V-notched cylindrical bar 

SAE 52100 [60] 373.0 334.0 V-notched cylindrical bar 
   *Fully-reversed uniaxial and torsional endurance limits estimated according to Peterson. 

 

Table 3: Fully-reversed uniaxial and torsional endurance limits for the investigated notched samples. 
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Finally, the diagram of Fig. 6 shows the error distribution measured in terms of Probability Density Function, which is 
nothing but the normal distribution calculated from the mean value and the standard deviation of any of the two 
considered data sets (i.e., plain and notched samples). In more detail, according to Fig. 6, the error distribution obtained 
when estimating multiaxial endurance limits of plain materials was characterised by a mean value equal to 0.3% and by a 
standard deviation of 7.3. Similarly, in the presence of stress concentration phenomena, the error distribution had mean 
value equal to -1.1% and standard deviation equal to 8.3. To conclude, it is possible to say that, as suggested by the 
Probability Density Function diagram of Fig. 6, the systematic use of the MWCM is seen to result in 85% of the estimates 
falling within an error interval of ±10%. 
 

 
Figure 5: Accuracy of the MWCM, applied in terms of nominal stresses, in estimating high-cycle fatigue strength of notched metallic 
materials subjected to multiaxial loading paths, where IPh=in-phase, OoPh=out-of-phase, ZMS=zero mean stress, N-ZMS=non-zero 
mean stress. 
 

 
 

Figure 6: Error distribution in terms of Probability Density Function. 
 
 
CONCLUSIONS 
 
1) The MWCM is capable of correctly taking into account the mean stress effect in multiaxial fatigue; 
2) The MWCM is seen to be highly accurate in accounting for the degree of multiaxiality and non-proportionality of the 

applied loading path; 
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3) Contrary to what stated by Dr. Papuga in Ref. [25], the systematic use of the MWCM is seen to result in about 95% of 
the estimates falling within an error interval equal to ±15%: this fully proves that the MWCM is a powerful 
engineering tool suitable for designing engineering materials against multiaxial fatigue. 
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