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POTENTIALITY AND BENEFITS OF 
ROBUST ENGINEERING AND THE 

TECHONOLOGICAL EXPERIMENTATION 
IN THE STEEL INDUSTRY

R. G. Bruna, C. A. Nomaksteinsky 

New thermomechanical processing (TMP) and steels with exclusive properties are continuously designed 
and optimized through the development, extension and application of metallurgical models and/ or carrying 

out expensive programs of R&D. This paper highlights the benefits of concepts such as “robust engineering”, 
“design of experiments (DOE)” and “process modeling” which are developed with a practical sorting for their 

better comprehension and effective industrial application. Improved process capability and performance in 
use of HSLA and high carbon steels, less number of industrial trials and lower costs of R&D are some of the 

advantages on applying this methodology.

KEYWORDS: DOE, statistical modeling, robust engineering, metallurgical modeling

OBJECTIVES OF THE TECHNOLOGICAL EXPERI-
MENTATION AND OF “ROBUST ENGINEERING”

The industry requires science to accomplish controlled 
transformations (variabilities), either to create new prod-
ucts and processes, or to improve the existent ones. An in-
dustrial process (Fig.1) can be defined as the set of rules 
and material conditioning for the production of a mate-
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rial good. Raw materials, equipments, workmen, operative 
practices (specification of the parameters, tolerances) form 
part of an industrial process. In order to control it, a certain 
number of basic parameters (called “control parameters” 
or “process parameters”) must stay fixed to avoid impor-
tant variabilities. Another number of parameters (the noise 
parameters) may vary between certain more or less defined 
limits and their control is not always convenient due to eco-
nomical or material reasons.
A causality relationship does exist between the output vari-
ables and the input variables, Y= F(X, Z, W,  …, T ; B1, B2, 
…, Br). Variations in the input variables (causes) will cause 
variations (effects) over the output variables. The main ob-

s

Fig. 1
 Industrial process (schematic).

Processo industriale (schema).

s

Fig. 2
 Histogram of yield strength [MPa].

Istogramma di frequenza della tensione di snervamento [MPa].
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jective of the experimental design (DOE) is to identify these 
relations of causality, measure and understand the effects of 
the processing parameters.  For this objective, we will use 
experimental methods which allow us to set causality re-
lations, and empirical models with stochastic components 
that will show the functional relation between the inputs 
and the outputs of the process.

Example (hot rolled steel strip)
The control parameters (inputs) are the chemical compo-
sition (C, Mn, N) and the coiling temperature. The noise 
parameters are: variations in chemical composition (inside 
the tolerance range) and variations in the rolling settings. 
The yield strength of the steel (YS) is the output to ana-
lyze, whose histogram is shown in Fig. 2. The centering of 
the process will be defined by the settings of some control 
parameters (or signal parameters). The spread of the proc-
ess may be determined by the effects of some control pa-
rameters (or spread parameters) and by those of the noise 
parameters. 

CLASIFICATION OF THE PROCESS PARAMETERS

Fig. 3 shows the effects of signal and the spread parameters 
on the Y process variable.
Signal parameters: have effect over the mean value of the 
process. Variations from these will cause changes in the 
mean value (centering of the process.)
Spread parameters: have effect over the variability of the 
process. The controls of these parameters allow us to re-
duce the impact of the noise parameters over the variability 
of the process. 

ROBUST ENGENEERING

One of the essential objectives of robust engineering is the 
reduction of the output variability around the specified val-
ues. This means to center the process at the nominal value 
and to reduce its intrinsic variability.
In the past, the common practice was trying to reduce the 
intrinsic variability by eliminating the processing noises. 
This strategy can be economically unviable, as well as tech-
nically impossible. The proposed method by G. Taguchi 
(1985) and developed in the literature (Phadke, 1989) is to 
try to eliminate or minimize not the noises, but the effects 
of them. This means to identify the spread effects of the 

processing parameters, and to use these effects to minimize 
the impact of the noise factors on the overall variability.

ROBUSTNESS AND BIAS MEASURES 
OF A PROCESS

The bias of a process which is under control can be estimat-
ed by the difference between its mean or average value 
(ỹ) and its nominal value (T). The robustness of a process 
can be estimated by its variance (s²) or by a monotonous 
function of its variance, and particularly by: S/N = - 10 
Log10(s²/k). K value is chosen so as S/N is always posi-
tive. It is clear that the process will be much more robust 
(less affected by the effects of noise) when lower the value 
of s² is [or 10 Log10(s²/k)] and higher  -10 Log10(s²/k) is. 
The reason to measure the robustness by means of -10 
Log10(s²/k) resides a) in the statistical-mathematical 
properties of these random functions; and b) in the non-
linear character of the “metric of the quality “. In effect, 
the industrial effort to reduce the variance will be greater 
in the case of a relatively “good” process that in case of a 
“bad” one (like a long-distance runner that must provide 
a greater personal effort in the end to cross a same dis-
tance that at the beginning of the race).

Effects of the parameters
In several industrial situations, the relation  Y = F(X, Z, W,  
…, T ; B1, B2, …, Br)  can be by often approximated by a 
Taylor series as a function of the control parameters (X, Z, 

s

Fig. 3
 Effects of the signal  (A) and the spread (B) 

parameters on the Y variable.
Effetto sulla variabile Y dei parametri segnale (A) e 
dispersione (B).

s

Fig. 4
 Main effect of parameter A (XB = 0).

Effetto del parametro A (XB = 0).

a

b
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W, …, T). A stochastic term (ε) is added  to represent the 
functional relationship between the output and the noise 
parameters (B1, B2, …, Br). If the experimental region is 
defined by a rectangle of industrially reasonable dimen-
sions, the polynomial development can be reduced to a 
second-order one. In the case of two parameters (A and 
B), we have: 

Y = a0 + aA XA + aB XB + aAB XA XB + bA X²A + bB X²B 
+ ε
where XA   y  XB are standardized:   
 -1  if the parameter is in the minimum value
XA   and  XB   = 				 
 +1  if the parameter is in the maximum value

The standardization is obtained with the followed trans-
formation:

XA   =  [2A – (Amaxi + Amini)] /  (Amaxi – Amini) 
XB   =  [2B – (Bmaxi + Bmini)]  /  (Bmaxi – Bmini)

The given value by the deterministic component of the 
model,  f(XA, XB) = a0 + aA XA + aB XB + aAB XA XB + 
bA X²A + bB X²B   represents the symmetry center of the 
process’s histogram (its mean value). It is supposed that 
the random component ε has, according to the probabil-
ity theory, a Gaussian distribution which zero mean and 
standard deviation σ (which measures the sum of the ef-
fects of noise parameters).
The effect of parameter A is the deterministic variation of 
the function caused by a variation Δ(XA)  from A1 to A2.

Considering  f (xA,xB) = a0 + aA xA + aB xB + aAB xA xB 
+ bA x²A + bB x²B
We have : Effect of A  = ΔA(f) = (aA + aAB xB) Δ(XA) + bA 
[2 xA1 Δ(XA) + Δ²(XA)]    

We take into account two cases:  i) bA = 0 ; and  ii) bA ≠ 
0.

First case (bA = 0)

Effect of A  = ΔA(f) = (aA + aAB xB) Δ(XA) 
The effect of A is proportional to the slope (aA + aAB xB). 
The slope is constant if and only if aAB = 0. 
If  aAB ≠ 0 : i) the effect of A changes with the value of 
parameter xB; ii) the same thing happens with B (which 
effect will change with the value of A). Hence, an interac-
tion between parameters A and B does exist. In this case, 
aA is the slope of the straight line which represents the 
effect of A when B takes the central value of its variation 
range  (XB = 0) and the corresponding effect is named the 
main effect of A. Graphically, we have (Fig.4-a and 4-b):

Second case (bA ≠0)

Effect of A  = ΔA(f) = (aA + aAB xB) Δ(XA) + bA [2 xA1 
Δ(XA) + Δ²(XA)]   
 = [{aA + bA* Δ(XA)} + aAB xB + 2 bA xA1] Δ(XA)   

The slope changes with the A value. If we fix the value 
xB = 0, we obtain the main effect of A (graphically repre-
sented by a parabolic arc).

Quadratic main effect
In this case (Fig. 5), the effect is a function of three factors: 
i) range of variation of the parameter, ii) initial value of the 
range of variation; and  iii) complementary value of the in-
teraction (if binary – or two-way – interaction is present). 

This model may be generalized to any number of param-
eters:
Y = a0 + Σai Xi + Σ aij Xi Xj + Σ bi X²i + ε	 [model(1)]
 where Xi   is standardized: 
-1  if the parameter is in the minimum value
Xi   = 			 
  +1  if the parameter is in the maximum value

It is supposed that ε has a Gaussian distribution with a 
mean equal to 0 and standard deviation σ.  Degree 3 and 
higher order terms are excluded. It is reasonable when the 
variation ranges of the parameters are not too wide. 

DESIGN OF EXPERIMENTS

A design of experiments (DOE) is a list of trials (runs) that 
give place to linearly independent equations for the esti-
mation of the parameters for the deterministic model, and 
hence, the estimation of the effect of the parameters. In the 
unreal and hypothetic case that the random component (ε) 
would have σ = 0,  it would be enough to choose any group 
of K trials giving K linearly independent equations in or-
der to estimate the k constants of the polynomial model. 
However, the presence in the model of aleatory component 
ε makes that two different groups of experiments (with the 
same number of trials) can give place to estimations with 
unequal precisions. 
The art of DOE consists in choosing, for a given number of 
trials n, the group of n trials (runs) which allow us to esti-
mate the constants of the model with the higher statistical 
precision as shown in Box and Draper (2007). We will ex-
emplify the methodology with the aid of three case studies. 
In the first and second cases, linear effects and interactions 
are evaluated. In the third one, possible quadratic effects 
will be also evaluated.

s

Fig. 5
 Quadratic relationship between parameter A 

and Y variable.
Relazione quadratica tra parametro A e variabile Y.
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THE CHOICE OF THE EXPERIMENTAL DESIGN AND 
THE NUMBER OF RUNS

The minimum number of required trials must be strictly 
higher to the number of effects to be estimated. If, in a first 
step, quadratic effects are not likely to be estimated, the 
Tab. 3 shows the number of main effects and the binary in-
teractions as a function of the number of parameters.
The higher the number of parameters, the higher the 
number of interactions is. If all these are to be estimated 
the experimental cost increases dramatically. Because of the 
Pareto principle only few interactions are really (statistical-
ly and physically) significant. To solve this problem, when 
the number of parameters k ≥ 4, it is desirable to estimate 
“aliases” (sums) of binary interactions instead of individu-
al estimations.
Tab. 4 includes the number of runs for the usual experi-
mental designs (Nomaksteinsky, 2005) that by allows the 

estimation of main linear effects and binary interactions as 
a function of the number of parameters.
Beside its usefulness, the interest on the two blocks-divided 
designs resides on the fact that the analysis of results from 
the first block allows, in certain cases, to extract enough 
information in order to avoid making the second block of 
experiments. On the other hand, the estimation of sums 
or aliases of interactions (and not individual estimations) 
shows big advantages and no major problems. In fact, these 
designs permit us to leave the presence of a significant 
quantity of interactions aside, achieving a great economy 
of experiments.  In addition the presence of a sum of inter-
actions statistically significant can result in several alterna-
tives: 
- Technical analysis on each one of the interactions included 
in the sum  allow  to discard some of them; 
- The discarding of interactions between two continuous 

s

Tab. 1
 Full factorial design,  A: Furnace temperature; B: Heating time; C: Cooling oil temperature.

Analisi fattoriale, A: Temperatura di riscaldamento; B: Tempo di riscaldamento; C: Temperatura di olio di raffreddamento.

RUN
1
2
3
4
5
6
7
8

A
-1
-1
-1
-1
1
1
1
1

B
-1
-1
1
1
-1
-1
1
1

C
-1
1
-1
1
-1
1
-1
1

AB
1
1
-1
-1
-1
-1
1
1

AC
1
-1
1
-1
-1
1
-1
1

BC
1
-1
-1
1
1
-1
-1
1

ABC
-1
1
1
-1
1
-1
-1
1

K
0
0
0
0
1
2
9

17

√k
0,00
0,00
0,00
0,00
1,00
1,41
3,00
4,12

Design of experiments Design of experiments

Design of experiments
Results

Source of 
variability
Constant

A
B
C

AB
AC
BC
ABC

Effect 
estimation

-
2,38
1,18
0,38
1,178
0,38
-0,18
-,018

Coefficient
estimation

1,19
1,19
0,59
0,19
0,59
0,19
-0,09
-0,09

s

Tab. 2
 Effects and coefficients estimations, 

A: Furnace temperature; B: Heating time; C: Heating 
time.
Valutazione dell’effetto e del coefficiente relativo
A: Temperatura di riscaldamento; B: Tempo di 
riscaldamento; C: Temperatura di olio di raffreddamento.

Number of 
parameters

2
3
4
5
6
7
8
9

10
11

Number of  linear 
main effects

2
3
4
5
6
7
8
9

10
11

Number of binary 
interactions

1
3
6

10
15
21
28
36
45
55

s

Tab. 3
 Number of main effects and binary interactions as a 

function of the number of  parameters.
Valutazione dell’effetto e del coefficiente relativo
Numero dei principali effetti e delle interazioni binarie in 
funzione del numero dei parametri.
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parameters when none of them shows main effects ;
- Additional  trials to dissipate doubts

CASE STUDIES 

Case I: hardenable boron steel
It is well known that solute boron can segregate to the 
austenite grain boundary and can delay the pro-eutectoid 
ferrite formation during continuous cooling. For this rea-
son hardenable boron steel are usually chosen for the farm-
ing tools production.  Good balance between hardness and 
toughness is required after quenching process, especially 
for avoiding tempering as a second treatment and hence re-
ducing the costs. In this sense the control of austenite grain 
size and of cooling stop temperature is very important.
This example is related to the design of an oil quench-
ing treatment of a medium carbon boron steel (0.30%C, 
1.3%Mn, 30ppmB, Ti/N > 4) used for plow discs (Bruna et 
al, 2002).  The estimation of the effects of three parameters 
on the robustness of the process is needed in order to ob-

tain the lowest frequency of plow discs with shape defect 
(twisting) after quenching. One hundred (100) plow discs 
of  2.5 mm thickness x 406 mm diameter for each run are 
analyzed.

Parameters:
   A: Furnace temperature, (880 ~ 920 °C)
   B: Heating time (3.7 ~ 4.4 min)
   C: Cooling oil temperature (40 ~ 70°C)

Output variable: amount (frequency) of discs with 
twist defect 
A full factorial design (Tab. 1) with eight runs was chosen. 
It results of the 23 combinations from the maximum and 
minimum of the range of variation of the three parameters. 
The AB column is obtained by multiplying, one to one, the 
cells of the A and B columns. The same procedure is ap-
plied to obtain the AC, BC and ABC columns. It is admitted 
that the results have a Poisson distribution. Therefore, the 
result of the test is a frequency, and frequencies represent a 

s

Tab. 4
 Number of  runs for the usual  DOE to evaluate main linear effects and binary interactions (or aliases of binary interac-

tions) as a function of the number of parameters.
Numero delle simulazioni DOE per la valutazione dei principali effetti lineari e le interazioni binarie in relazione al numero di 
parametri.

2
3
4
4
5
5

6

6
7

8

8
9

10
11

4
8
8
12
16
16
16
22
16
16
9
12
12
12

A, B
A, B, C

A, B, C, D
A, B, C, D

A, B, C, D, E
A, B, C, D, E

A, B, C, D, E, F

A, B, C, D, E, F
A, B, C, D, E, F, G

A, B, C, D, E, F, G, H

A, B, C, D, E, F, G, H
A, B, C, D, E, F, G, H, I

A, B, C, D, E, F, G, H, I, J
A, B, C, D, E, F, G, H, I, J, K

AB
all

AB+CD, AC+BD, AD+BC
all
all

AB, AC, AD, AE, BC+DE, 
BD+CE, BE+CD
AB+EF, AC+DF,
AD+CF, AE+BF,

AF+BE+CD,
BC+DE, BD+CE

all
AB+DG+EF, AC+DF+EG, 
AD+BG+CF, AE+BF+CG
AF+BE+CD, AG+BD+CE, 

BC+DE+FG
AB+CD+EF+GH, 
AC+BD+EG+FH, 
AD+BC+EH+FG, 
AE+BF+CG+DH
AF+BE+CH+DG, 
AG+BH+CE+DF, 
AH+BG+CF+DE

none
none
none
none

Carry out at least two 
repetitions for each  run

Design divided in two consecutive 
blocks of 8 runs each one
Design divided in two 

consecutive blocks of 8 runs 
each one

Design divided in two 
consecutive blocks of 8 runs 

each one

Exploratory design
Exploratory design
Exploratory design
Exploratory design

Main effects Binary interactions

Effects to be estimated
Results

Number of 
parameters

Number 
of  runs
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small proportion of the total. For the analysis of the results, 
we will work then with the square root of the frequency. 
Let us call A-1 the average of the 4 results corresponding to 
the trials with xA = -1; and A+1 the average of the 4 results 
corresponding to the trials with xA = +1. The least square 
estimation of the coefficient aA is obtained calculating (A+1 
- A-1)/2.
Least squares estimations of the coefficients aB, ... , aABC 
are obtained by similar calculations from the respective 
columns of the matrix. The effects estimations are obtained 
multiplying by 2 the least squares estimations of the coeffi-
cients. In the following Tab. 2, the estimations of the model 
coefficients are shown, as well as the effects estimations. 

The effects that stand out are the main ones of A and B, as 
well as the AB interaction.

Modelization
 Estimation of the average of √k = 1,19 + 1,19 * Furnace 
temp. (A) + 0,59 *  Heating time (B) + 0,59 * Furnace temp. 
(A) *  Heating time (B)
Fig. 6 is the graphic of Furnace temperature*Heating time 
(AB) interaction.

Conclusions
The only parameters with effects on the shape problem 
(twist) of discs are the furnace temperature and the heat-
ing time. At low furnace temperature (880 °C), the vari-
ations of the heating time (between 3.7 and 4.4 min) are 
without effect. In these conditions, the estimation of the 
average of √k = 1,19 + 1,19 *  (-1) + 0,59 * Heating time + 
0,59 * (-1) * Heating time = 0. At high Furnace temperature 
(920 °C), the variations of the heating time (between 3.7 
and 4.4 min) causes variations in the frequency of plow 
disks with twist defect. In these conditions, the estimation 
of the average of √k = 2,38 +1,18 * Heating time.

Case II: C-Mn-V steel for welded pipes 
This case deals with the development of thermo-mechan-
ical rolling of hot strips for the production of J55 grade 
welded pipes (ERW, 6.9 mm thickness x 140mm ∅) with-
out making full body normalizing treatment.  Therefore, 
strict control of the mechanical properties on the hot strip 
is necessary to avoid rejected tubes.
We tried to evaluate both signal and dispersion effects, 
of k = 4 parameters on the mechanical properties (yield 
strength, which we wish to decrease, and tensile strength, 
that is desired to maximize) of hot rolled strip as studied 
by Bruna et al (1996). The parameters were selected tak-
ing into account their possible influence over amount and 
type of microstructural constituents (pearlite, vanadium 
precipitates) 

s

Fig. 6
 AB Interaction plot (data means) for √k, 

A: Furnace temperature; B: Heating time.
Grafico della interazione A B (medie di dati) per √k,
A: Temperatura di riscaldamento; B: Tempo di 
riscaldamento.

RUN
1
2
3
4
5
6
7
8

A
-1
-1
-1
-1
1
1
1
1

B
-1
-1
1
1
1
1
-1
-1

C
-1
1
-1
1
1
-1
1
-1

D
-1
1
1
-1
1
-1
-1
1

AB 
+

CD
-1
-1
1
1
-1
-1
1
1

AC 
+

BD
-1
1
-1
1
-1
1
-1
1

AD 
+

BC
-1
1
1
-1
-1
1
1
-1

369
373
387
425
387
457
399
416

379
356
382
397
378
449
415
375

406
370
381
402
389
414
400
381

396
366
404
408
407
410
404
386

388
371
395
406
406
412
416
375

s

12,88
6,05
8,66
9,48

11,32
20,28
7,30

15,27

YS 
average
(MPa)
387,6
367,2
389,8
407,6
393,4
428,4
406,8
386,6

S/N

7,80
14,37
11,25
10,47
8,92
3,86

12,73
6,33

EXPERIMENTAL DESIGN Interactions

FACTORIAL EFFECT 
Results

s

Tab. 5
 Fractional factorial design (8 runs), S/N = -10 * log10(s²/1000), A: Carbon; B: Manganese; C: Nitrogen; 

D: Coiling Temperature.
Disegno fattoriale frazionato (8 simulazioni), S/N = -10 * log10(s²/1000)A: Carbonio; B: Manganese; C: Azoto; 
D: Temperatura di avvolgimento.
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Parameters : 
A: Carbon, C (0.14 ~ 0.18 %wt)
B: Manganese, Mn (1.00 ~ 1.30 %wt)
C: Nitrogen, N (35 ~ 80 ppm)
D: Coiling temperature, CT (580 ~ 650°C)

Output variable: mechanical properties
An eight run fractional factorial design was selected (Tab. 
5). Five repetitions were carried out by experimental set-
ting. The average and standard deviation of yield strength 
and tensile strength were calculated (only the results for 
yield strength are shown). The robustness seeked concerns 
the intra-trial as well as the inter-trial variability (repeat-
ability and reproducibility) 
AB and CD columns are identical; therefore, both effects are 
«aliased» and the calculation carried out from the column 
is an estimation of the sum of both effects. The same hap-
pens with the other two columns belonging to the aliases 
AC+BD and AD+BC. Tab. 6 shows the analysis of signal (I) 

and dispersion (II) on yield strength 

Analysis of signal effects on yield strength
Significant effects can be assigned to the A,B and D pa-
rameters (Fig. 7). Other effects can be assumed as noises of 
the process (Pareto principle). The manganese and carbon 
contents have a positive effect on the mean yield strength 
whereas the coiling temperature has a negative effect and 
the nitrogen content has no influence on the yield strength. 
These conclusions are valid for the evaluated experimental 
range.

Analysis of dispersion effects on the yield strength
Carbon and nitrogen effects are remarkable. The carbon 
content has a negative effect over robustness of the proc-
ess and nitrogen has a positive effect. Manganese and the 
coiling temperature do not have effects on the robustness 
of the process. These conclusions are valid for the varia-
tions within the defined intervals. Therefore, the robust-

Source of 
variability

A
B
C
D

AB+CD
AC+BD
AD+BC

Effect 
estimation

15,75
17,75
-4,35
-23,35
-3,55
-3,05
-4,25

Coefficient
estimation

7,88
8,88
-2,18
-11,68
-1,78
-1,53
-2,13

Source of 
variability

A
B
C
D

AB+CD
AC+BD
AD+BC

Effect 
estimation

-3,01
-1,68
4,31
1,50
-1,46
1,42
-2,17

Coefficient
estimation

-1,51
-0,84
2,16
0,75
-0,73
0,71

-1085,00

s

Tab. 6
 Analysis of  signal effects (Ieft) and dispersion effects (right) on Yield Strength, A: Carbon; B: Manganese; C: Nitrogen; 

D: Coiling Temperature.
Analisi degli effetti sulla tensione di snervamento dovuti al segnale (grafico a sinistra) e alla dispersione (grafico a destra),
A: Carbonio; B: Manganese; C: Azoto; D: Temperatura di avvolgimento.

s

Fig. 7
 Main effects plot for average Yield Strength 

[MPa], A: Carbon; B: Manganese; C: Nitrogen; D: 
Coiling Temperature.
Grafico degli effetti principali per la tensione di 
snervamento media [MPa] A: Carbonio; B: Manganese; 
C: Azoto; D: Temperatura di avvolgimento.

s

Fig. 8
 Main effects plot for dispersion parameters (S/N) 

on Yield Strength, A: Carbon; B: Manganese; C: Nitrogen; D: 
Coiling Temperature.
Grafico degli effetti principali per il parametro dispersione media 
(S/N) relativo alla tensione di snervamento, A: Carbonio; B: 
Manganese; C: Azoto; D: Temperatura di avvolgimento.
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ness of the process can be optimized tending to maximize 
the level (ppm) of nitrogen and to diminish the content of 
carbon; and the yield strength levels can be minimized by 
minimizing the manganese content and maximizing the 
coiling temperature.

Conclusions
These results allowed us to implement a dynamic control 
system during the secondary metallurgy and hot rolling 
processes that aims at the optimal values of the param-
eters. The process capability (measured by the Cpk coef-
ficient), after the modifications indicated by the analysis, 
was improved from 1.02 to 1.25 value. 

Case III: HSLA steel
It is well known the synergy between microalloying ele-
ments (MAE) and thermo-mechanical controlled rolling 
processing (TMCP) to achieve the mechanical properties 
in microalloyed steels (HSLA). Grain refinement and pre-
cipitation hardening are mechanisms which require both 
steel alloy designs using different MAE (Nb, V, Ti, Mo, 
etc.) and an optimized rolling practice.  Therefore, this 
work was aimed to set a robust design by using an experi-
mental design combined with metallurgical deterministic 
models to predict microstructural evolution and mechani-
cal properties of high strength steels. The obtained results 

using this methodology were validated in industrial pro-
duction (Bruna et al, 2004).
Parameters:
A: Niobium, Nb (0.030 ~ 0.060 %wt)
B: Manganese, Mn (1.00 ~ 1.30 %wt)
C: Thickness reduction at the 4th finisher stand, rF4 (> 
23%)
D: Thickness reduction at the 5th finisher stand, rF5 (> 
20%)
E: Finishing temperature, FT (840 ~ 900 °C)
F: Coiling temperature, CT (550 ~ 650°C)
Strip thickness: 6.35 mm

Output variable: mechanical properties
Tab. 7 shows the experimental normalized matrix design 
used and the predicted tensile properties obtained by sim-
ulation.  The 34 experimental runs permitted us to deter-
mine the linear and quadratic main effects and the binary 
interactions for the six chosen design variables.  This ex-
perimental matrix has excellent statistical properties. The 
factorial part of the design (with Xi =   ± 1) results from 
a quasi-optimal design in 22 runs able to estimate 6 main 
linear effects and 15 binary interactions. The last 12 exper-
imental runs result to carry out two experiments for each 
parameter with the ± 1 value whereas the other param-
eters take cero value.  The outputs variables are  YS (yield 

run

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

A

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

1

1

1

1

1

B

-1

-1

-1

-1

-1

-1

-1

1

1

1

1

1

-1

-1

-1

-1

-1

C

-1

-1

-1

1

1

1

1

-1

-1

1

1

1

-1

-1

1

1

1

D

-1

1

1

-1

-1

1

1

-1

1

-1

1

1

-1

1

-1

1

1

E

-1

-1

1

-1

1

-1

1

1

-1

-1

-1

1

1

-1

-1

-1

1

YS

465

478

442

473

442

464

447

489

572

572

588

476

469

520

505

534

527

F

-1

1

-1

1

-1

-1

1

1

-1

-1

1

-1

1

-1

-1

1

-1

run

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

A

1

1

1

1

1

-1

1

0

0

0

0

0

0

0

0

0

0

B

1

1

1

1

1

0

0

-1

1

0

0

0

0

0

0

0

0

C

-1

-1

-1

1

1

0

0

0

0

-1

1

0

0

0

0

0

0

D

-1

-1

1

-1

1

0

0

0

0

0

0

-1

1

0

0

0

0

E

-1

1

1

1

-1

0

0

0

0

0

0

0

0

-1

1

0

0

YS

638

560

497

494

645

488

555

501

581

517

519

519

517

562

515

482

500

F

1

-1

1

1

-1

0

0

0

0

0

0

0

0

0

0

-1

1

s

Tab. 7
 Design of Experiments. YS [MPa] values are predicted by metallurgical model.

A: Niobium; B: Manganese; C: rF4; D: rF5; E: Finisihing Temperature; F: Coiling temperature.
DOE. I valori della tensione di snervamento YS [MPa] sono stati predetti mediante modello metallurgico,
A: Niobio; B: Manganese; C: riduzione di spessore in finitore F4; D: riduzione di spessore in finitore F5; E:Temperatura 
finale fi laminazione; F: Temperatura di avvolgimento.
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strength), UTS (ultimate tensile strength), YS/UTS x 100 
(elastic ratio). Only the results regarding YS are shown.
The term ε of the model (1) does not designate in this ex-
ample a random component, as it does not represent the 
variations caused by the noise parameters of the process, 
but a) the lack of adjustment of the model by means of 
the polynomial development, and b) possible variations 
of the parameterization of the method to obtain the results 
of the metallurgical deterministic model.

The application of statistical software (Minitab ) of lin-
ear regression provides the following results:

The regression analysis has been carried out with the 
standardized data. Estimated regression to YS

Effect          Coef.   Er-T Coef        T      P
Constant       521,85       3,963    131,683  0,000
A               24,79       2,463     10,063  0,000
B               37,59       2,463     15,260  0,000
C               -1,54       2,463     -0,623  0,556
D                0,21       2,463      0,087  0,933
E              -33,04       2,463    -13,415  0,000
F               -4,14       2,463     -1,681  0,144
A*A             -0,35       7,366     -0,047  0,964
B*B             19,15       7,366      2,600  0,041
C*C             -3,85       7,366     -0,522  0,620
D*D             -3,85       7,366     -0,522  0,620
E*E             16,65       7,366      2,261  0,064
F*F            -30,85       7,366     -4,187  0,006
A*B              0,30       2,587      0,117  0,911
A*C              1,77       2,587      0,682  0,520
A*D              4,05       2,587      1,564  0,169
A*E              0,07       2,587      0,027  0,980
A*F             -7,13       2,587     -2,756  0,033
B*C             -2,65       2,587     -1,023  0,346
B*D             -4,12       2,587     -1,591  0,163
B*E            -21,27       2,587     -8,220  0,000
B*F             -2,22       2,587     -0,857  0,424
C*D              6,55       2,587      2,530  0,045
C*E              0,59       2,587      0,227  0,828
C*F              0,54       2,587      0,208  0,842
D*E             -0,88       2,587     -0,341  0,745
D*F              0,32       2,587      0,123  0,906
E*F             -8,20       2,587     -3,170  0,019

S = 11,34       R² = 99,1%  R²(adjust) = 95,0%

ANOVA for YS      

Source	            DF             SQ             MS         F         P
Regression        27    84723,5      3137,9  24,41  0,000
Linear                 6    63948,3     10658,0  82,93  0,000
Quadratic            6       3295,1        549,2    4,27  0,050
Interaction          15      14378,2       958,5    7,46  0,010
Residual error      6        771,2       128,5 
Total                 33    85494,6

Reducing the model on the basis of previous results and of 
metallurgical evaluation, we obtain:

The regression analysis has been carried out with the standar-
dized data. Estimated regression coefficients to YS      

Effect              Coef.    Er-T Coef              T               P
Constant     521,07       3,740    139,324  	     0,000
A                 26,12       2,293      11,389        0,000
B                 37,41       2,293      16,312        0,000
E                 -32,54       2,291     -14,202        0,000
B*B             17,08       6,511        2,623        0,015
E*E              14,58       6,511        2,239        0,035
F*F             -32,92       6,511       -5,056        0,000
A*F               -8,86       2,402       -3,688        0,001
B*E             -21,00       2,402       -8,744        0,000
E*F               -8,99       2,405       -3,738        0,001

S = 10,96       R² = 96,8%  R²(adjust) = 95,4%

Modelization
Estimation of the average of YS (MPa) =  521,1 + 26,12 * Nb 
+ 37,41 * Mn – 32,54 *     
 * FT + 17,08 *  Mn² + 14,58 * FT²  -  32,92 * CT²  - 8,86 * Nb* 
CT - 21 * Mn* FT – 
- 8.99 * FT* CT

Conclusions
Parameter Niobio (A) has a linear main effect and an in-
teraction effect with parameter Coiling temperature (F). 
The Manganese (B), Finishing temperature (E) and Coiling 
temperature (F) parameters have quadratic main effects, 
and there are B*E and E*F interactions. This methodology, 
combining the use of metallurgical models with an efficient 
experimental matrix, allowed to obtain an optimized steel 
alloy and rolling practice. The effectiveness of the method 
and the robustness of the design were verified in industrial 
production.

FINAL CONCLUSIONS

Concepts such as “robust engineering”, “experimental 
design” and “process modeling” were developed with 
a practical sorting for their better comprehension and ef-
fective industrial application. The experimental method-
ology was introduced with the aid of three case studies. 
The linear and quadratic main effects and the interactions 
for the chosen design variables were determined. Em-
pirical models, which show the functional relationships 
between the inputs and the outputs of the process, were 
obtained. The examples allowed us to draw conclusions 
about ideal conditions for the processing of hardenable 
boron steel to reduce a shape defect in farming tool, an 
optimized alloy steel for API grade with higher process 
capability (Cpk), and the design of a high strength low 
alloy steel (HSLA) and of its thermo-mechanical process.  
The less number of industrial trials and lower costs of 
R&D are some of the additional advantages on applying 
this methodology.
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ABSTRACT
POTENZIALITA’ E VANTAGGI DEL “ROBUST 
ENGINEERING” E DELLA SPERIMENTAZIONE 
TECNOLOGICA NELL’INDUSTRIA SIDERURGICA

Keywords: 

Acciai con proprietà uniche e nuovi processi termo-meccanici (TMP) 
sono progettati e ottimizzati in modo continuo mediante lo sviluppo, 
l’estensione e l’applicazione di modelli metallurgici e/o la realizzazione 

di costosi programmi di ricerca e sviluppo.
In questo lavoro si sottolineano i benefici di metodi come “robust engi-
neering”, “design of experiments (DOE)” e “modellistica di processo” 
che sono stati sviluppati da un punto di vista pratico per una migliore 
comprensione e una più efficace applicazione industriale.
Migliorate capacità di processo e prestazioni in servizio di acciai HSLA e 
ad alto carbonio, minor numero di prove industriali e minori costi della 
ricerca e sviluppo sono alcuni dei possibili vantaggi derivanti dalle appli-
cazioni di queste metodologie.
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