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Abstract
The stress singularity due to the presence of V-notches is discussed, and the basic conditions for the theoretical applicability of field criteria
for faylure analysis are examined. The present study is aimed to give a geometric definition of specimens undergoing tensile siress.

Riassunto

Si considera la singolarita del campo tensionale dovuta ad intagli a V e si valutano le condizioni da soddisfare perché sia teoricamente
applicabile un criterio di campo ai fini della verifica di resistenza. Il presente studio & finalizzato alla definizione geometrica dei provini da
sottoporre a trazione.

Introduction

The failure analysis of machine components with stress concentration, is generally carried out with
reference to the nominal stress and introducing the stress concentration factor into the allowable strength
calculation. Such a coefficient, apart from a rather unpracticable case-by-case experimental determina-
tion, can be derived from the theoretical stress concentration factor and notch sensitivity. Such a
procedure, however, is hardly applicable in case of sharp angle notches because of the stress field
singularity. In such circumstances, an indetermination area is likely to emerge as the theoretical notch
coefficient would be infinite and notch sensitivity would tend to zero.

The aim of the research under course is to fill up such a gap, and in particular to investigate whether
criteria similar to the ones employed in the fracture mechanics will still apply. In other words, the
question is to ascertain if and when the fracture can be correlated to the typical quantities of the stress
field singularity obtained by the elastic solution.

The present study falls within the above research program and is specifically aimed to define the most
suitable shape to be conferred to the specimens, as well as the required accuracy of machining
operations. In particular, the various disturbance causes likely to affect the stress field are discussed, and
the extension of the disturbed areas as well as their effects on the field criteria applicability are assessed.

Singular stress fields

With reference to plane problems and a V-notch with stress free surfaces, the analytical expression of
the singular integral of the homogeneous equations is well known in the case of unlimited domain [3], [5].
Such a singularity referring to the angle bisector, may consist of two components: a symmetric
component and an antisymmetric one. Assuming a polar reference with origin at the notch tip (Fig. 1)
and considering the symmetric portion, the singular stress field is represented by the following equations:

o¥= iﬁ {(2+A)cos(ab) +a cos[(a+2)0]} (1)
of= 11:1 {(2—A)cos(ab) —a cos[(a+2)0]} 2)
Tﬁy:?ﬁx:%'{A sin(00) +a sin[(a+2)0]} 3)
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Having placed

A =cos[2(1 —a)0,] + (1—a)cos(20,):

For the antisymmetric part, instead, we will have:

0,’;*:%-{—[2—%A’)sin(a’6)+a'sin[((x’+2)8]} 4)
s f =2 A'sin{a"8) — o'sn[(e’ 28] )
=T rul' {A’cos(a'8) — o’ cos[(a’ +26]), ©)

having placed
A'=cos[2(1—=a")0,]— (1—a')cos(26,),

where the exponents o and o’ are a function of the notch opening angle § and 6,=m— /2. These
exponents are the solution of the transcendental equations

sin[2(1 + a)8,] +sin(26,) =0, (7)

for the symmetric field, and

——sin[2(1 - a)0,] —sin(26,) =0, (8)
for the antisymmetric field. The exponents trend in terms of § is shown in Fig. 2. It is worth noting that
the antisymmetric singularity is weaker than the symmetric one, and only occurs if f<~102°. The
symmetric one is always present provided the corner is re-entrant (3 <<180°).

Using an extension of the Fracture Mechanics words, the constants K and K’ will be referred to as
generalized stress intensity factors.

Actually the stress field deviates from the pure theoretical singularity due to various reasons:

— boundary conditions not equivalent to the asymptotic ones of the singular field:
— effects of geometric non-linearity due to unlimited strains at the notch tip;

— microstructural non-homogeneity of material;

— geometrical manufacturing inaccuracies of the tip;

— material non-linearity.

Conditions for field criteria applicability to the failure analysis of notched
parts

In case of finite domain without volume forces, stresses can be thought of as summation of a singular
part expressed by egs. (1, 6) and a non-singular part necessary to meet the boundary conditions, i.e.:

Oij = GTJ' + AGij- (9)
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The non-singular part Ac;; depends on boundary conditions. In relative value such a term, which is
important near the boundary portion other than the notch sides, vanishes when getting near the notch tip
itself. Assuming that the fracture starts from the notch tip and the actually important stress field is the
immediately surrounding one, a zone in the neighbourhood in which the disturbance Ao;; is practically
negligible.

The amplitude of such a arca depends on specimen size and geometry, in addition to the load
application mode. One can thus recognize two areas shown in Fig. 3 with A and B; the eq. (9) prevails in
the area B, whilst in the area A one can deem that o;; (x, y) = o%j(x, y), can be defined.

The non-linearity and microstructural lack of homogneity of materials cause deviations of the actual
behaviour from the linear-elastic solution.

In fact, the stress field of the analytical solution does not match with the reality at the notch tip, as at
a microscopic scale one can no longer consider the material structure as homogeneous or the linear
solution as accurate because of the large strains taking place there. Moreover, structural materials
generally deviate to a certain extent from Hooke’s law prior to fracture. These effects are at a peak close
to the notch tip while they decrease getting far from it. Finally the inaccurate accomplishment of a sharp
notch (due to defects in machining operations) also involves some changes in the stress field. Actually,
without a sharp corner, the singularity foreseen by theory would disappear.

With reference to a given material, just prior to fracture, considering a domain in €, and assuming
t,hat the material presents an initial linear portion, we can in principle recognize the areas Ag, A, Az, As
shown in Fig. 4. In the area A, the theoretical computation is not meaningful due to lack of homogeneity
of the material; the area Ay, usually inclusive of Ay, is the site of non-linearities; in A,, instead, one can
appreciate the disturbances induced by areas A, and A, versus the theoretical linear solution; in the area
A;, the linear-elastic solution is practically valid. When considering a notched element (and thus a
limited domain), the linear elastic fracture mechanics (LEFM) is surely applicable if the area A, is within
the area A, previously defined. Such a situation is reported in Fig. 4. If the area A limit is included within
the area A,, it may happen that the boundary disturbance, adding to the ones due to non-linearities,
changes the extension of the area A;. In this case, one shall apply the non-linear fracture mechanics
(LEFM). Indeed, the LEFM will apply if the disturbance coming from the boundary affects the area A;
(Fig. 5). Eventually, if the boundary disturbances come to affect A,, the field criteria will no longer

apply.

Effect of the boundary proximity

The disturbance induced by the boundary proximity was quantified for a load condition involving the
presence of the only symmetric part of the singular field. By a boundary elements code [4], [8] generally suited
to problems related to fracture mechanics [7], the stress fields were analysed in the case of rectangular section
specimens, with two symmetric notches having angle =90° under axial load (Fig. 6). Comparing the pure
singular field o%; to the specimen one, two boundaries were assessed within which the differences Aoy (9) are
not over 5% and 10%, respectively, of the maximum principal stress. Fig. 7 shows the extensions of such
boundaries as a function of the ratio (W-2C)/W, where C indicates the notch depth and W the specimen
width. For small notch depths, there prevails the disturbance due to the finite lenght of the corner sides,
whereas for higher depths the disturbance due to the proximity of the opposite boundary will prevail.
Such considerations justify the fact that there is a depth C for which the extension of practically
undisturbed area is at a maximum. In particular, for the specimens under survey this occurs for a value of
the ratio (W-2C)/W estimated around 0.5, this value being considered optimal.

Fig. 8 shows the shape factor @, related to the ratio (W-2C/W)
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where 0, indicates the ratio between the applied force F and the net resistant section, while the other
quantities are the ones already referred to this factor enables to find K, to be inserted into the formulas
(1, 3), for opening angle f=90° for any notch depth.

Similar investigations were carried out on specimens with different geometries and load conditions
without however obtaining — the specimen width being equal — larger areas with small disturbance.

Effect of geometric defects due to machining operations

The geometry of defects, as such, is not widely known. The magnitude order of the ratio between the
defect extension and the disturbed area extension can be studied considering for simplicity sake a circular
fillet radius at the notch bottom end. The graphs in Figs. 9 and 10 report the stress trend on the bisector in
direction of the axis x and vy, in the cases of pure singularity and blended recess. One can note that
differences vanish when getting far from the recess bottom end, so that a distance can be located beyond
which differences become negligible. The stress computation was performed, by the above mentioned
boundary elements code, imposing the pure singular displacements ou a sufficiently distant boundary.

In particular, it was found out that for distances equal to 0.97 and 1.91 times the fillet radius, the
disturbance for o, is about 5% and 10%, respectively.

When there is a fillet radius r the stress field is no more singular and the theoretical stress
concentration factore ay can be related to the generalized stress intensity factor K by the equation:

Ol (I') *Onom = )\% (10)

where K and a are the ones already defined and X is a proportionality factor that does not depend on the
radius provided this is sufficientely small.

Equation (10) can justify that, under conditions of similitude, maximum stress criteria are applicable
using the notch intensity factor

Br=1+nk (ax (r)—1)

where r is a small and arbitrary radius and the notch sensivity is an adjusted function of r.

Effect due to the material inelastic behaviour

This type of disturbance was assessed as excess approximate order by the method described earlier.
The yielding of the material was schematized assuming as limit hypothesis, that small portion at the
singularity does not contribute to withstand internal stress. This is the same as removing the material
within a boundary of the tip which for simplicity is assumed to be circular. In order to evaluate the
influence of the form of such boundary, the case of a crack with a depth equal to the diameter of the area
previously considered was also analysed. In Figs. 11 and 12 a comparison is made between the pure
singularity and the stress fields arising in the cases of material removal within a circle with unit radius and
a crack with unit depth. In both cases the disturbance disappears when getting far from the damaged
area. After material removal, at distances of 5.7 and 9.2 radii, one can see differences of 5% and 10%
respectively, while in the presence of a crack such differences will respectively appear at a distance of 4.7
and 7.6 times the length of the crack itself. This is a further confirmation that the extension of the
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disturbed area is not much effected by the way of yielding of the material, on condition that it is
localized.

Conclusions

As regards the execution of experimental tests aimed to determine the fracture strength of V-notched
materials, it was defined the optimized depth to be ascribed to the specimen notch undergoing axial load.
Further, the conditions to be met were evaluated in order to get significant results from tests both in
linear and non-linear fields.

Waiting for test results, we can in principle assume that fillet radii no higher than the dimensions of
structural non-homogeneities are uninfluential. Moreover for materials with a markedly plastic
behaviour, we can suppose that even larger fillet radii are uninfluential, provided that they are small in
comparision with the plasticized area.
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