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Abstract
Thermodynamic approximations for cooperative phenomena in solids are reviewed and a new approximation is proposed and developed. The
method calculates the configurational free energy for lsing and Heisenberg model systems, from a series of quasi-chemical reactions, adopting a
syste m re n orm a I i zat i on sol ut i on st rategy.
Magnetic and suitable order4isorder transformations are properly represented as higher order transitions. An elastic energy term is introduced to
take into account the atomic size and shape change effects in metallic alloys. With this method we can distinguish when an ordering transition
becomes first order. The method is also suitable for a theoretical calculation of the magnetic free energy contribution to ferromagnètic alloys.

Rias$unto
Fenomeni cooperativi ed influenza dell'energia di deformazione nelle leghe
Vengono presentate le approssimazionitermodinamiche sui fenomenì cooperativi nei solidi ed è proposto e sviluppato un nuovo tipo dì
approssimazione. Con questo metodo si ottiene l'energia libera configurazionale per sistemiche seguono il modello di lsing o di Heisenberg, da
una serie di reazioni quasichimiche, con una strategia di risoluzione ìn cui il sistema viene di volta in volta rinormalizzato. Le trasformazionidi fase
magnetiche e quelle ordine-disordine, ad esse assìmilabili, sono giustamente rappresentate come transizionì di ordine superiore. Per tenere conto
degli effetti di dimensione degli atomi e di variazione di forma nelle leghe metalliche si introduce un contributo di energia elastica. ln questo modo è
possibile distinguere quando una transizione di ordinamento diventa del primo ordìne. Con questo metodo è anche possibile valutare il contributo
magnetico all'energia libera delle leghe ferromagnetiche.

lntroduction

Cooperative phenomena play a fundamental role in
crystals by determining many aspects of their phase
transformations. They are particularly interesting for
solutions with extended ranges of solubility, such as
metallic solutions, and when phase changes with
conservation of the lattice frame are considered, i.e. for
coherent phase transformations.
During the last decade, many studies have been
devoted to the thermodynamics of concentrated solid
solutions (1) and some coherent phase diagrams have
been calculated (1-5).
For concentrated solutions, the configurational part of
the free energy is mainly an entropic term and methods
have been proposed for calculating it. The main
statistical models are, in order of complexity and
approximation:

- the "mean field" or Bragg Williams (BW) model;

- the quasi-chemical (OC)approximation of Fowler
and Guggenheim;

- the cluster variation (CV) method invented by
Kikuchi (5).

The last method has recently been used to evaluate
prototype coherent phase diagrams (4)from first
principles. These diagrams were obtained with
considerable computational efforts, but permit the
evaluation of many interesting quantities, such as: long
and short-range order parameters, critical fluctuation
intensity. entropy changes. With these results, we can
begin to understand the coherent transformations,
which determine the early products in industrial phase
transformations and the microstructure of the resulting
alloy.
The statistical thermodynamic models so far proposed,
although giving results and trends in general agreement
with the experimental behaviour of alloys, fail to catch

some special features of the phase transitions; for
instance, critical transitions are interpreted as second
order transformations at most, while they can be higher
order transformations with specific heat increasing to
an infinite value, at the critical temperature, Ts. The
well known order-disorder transformation for B brass is
interpreted only very approximately with these models.
The simplest physical model representing the ordering
of an alloy is the same as adopted for a system of
interacting anisotropic spins, in a vanishing magnetic
field: the lsing model. Onsager (6) has shown that it is
possible to obtain an exact solution of this problem for
the two-dimensional square-lattice with the degree of

occupation g : A. He has shown that the order-'2
disorder transition of the lsing model is of the critical
type, and that the failure in reproducing this important
feature by the proposed approximations lies in the
assumptions introduced to make the problem tractable.
Strategies have recently been proposed for solving this
type of problem, based on the renormalization group
(RG)method, which permit us to dealwith problems
involving many scales of length; that is, problems with
fluctuations in physical quantities developing at all
possible length scales (7-B). Critical phenomena are an
example of this type of problem, where the whole
spectrum of length scales must be taken into account.
Simple RG methods, such as the "spin decimation"
transformaîion invented by Kadanoff (9-10) and the
block-spin technique (1 1), have been used with great
success to obtain data on 2D lsing models. ln these
methods some spins are held fixed while other spins
are averaged, producing an effective interaction on the
fixed spins. ln the block-spin technique this involves
three basic steps: division of the lattice into spin-
blocks, averaging and replacement at the spins in the
block with a single fixed spin having the average value,
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reduction of the dimensions of the system by giving to
the fixed spins the original space. At every aveiaging
step, fluctuations smaller than the block dimensions are
eliminated.
These methods have a serious inherent limitation:
severe truncations are needed in practical calculation to
limit the number of parameters contained in
interactions. Thus Monte Carlo RG has been developed
and successfully applied to the 3D lsing model (12-j3).
An important consequence of the RG methods is
that at Ts the thermodynamic potential of the system
is independent of the system details at atomic level.
Then, it seems possible to obtain a better approximation
method starting from a good definition of the critical
properties, instead of describing the atomic distribution
starting from a very low (complete order) or very high
(complete disorder)temperature. ln a previous paper
(14), it was shown that it is possible to improve the OC

approximation value of the critical parameteré
2 KBTC

were Ae is the interaction energy of a pair of atoms
occupying two neighbouring positions and KB the
Bolzmann constant, by a simple modification of the
partition function O of the system. This modification can
be interpreted, in the same frame of the OC reasoning, if
we adopt a RG procedure (15). ln this case, we must
introduce, even at the criticaltemperature, two types of
interaction, the direct interaction between atom pairs and
the interactions between fixed atoms, when they
represent the average value of the interacting atoms
after the second step of the block-spins tech"nique. This
means that, even at T6, we must consider two quasi-
equilibrium reactions with different interaction energies.
At Ts we can determine the characteristics of the blòcks
and of the averaging procedure. When T is less than or
higher than Tc, to evaluate the thermodynamic potential
of the system we must take into account the variation in
the coupling strength, increasing at T < T6 and
decreasing at T ) T6 at each renormalization
transformation, and the variation in the T of the system
after each averaging, decreasing rapidly towards zero
temperature at T < Tc and increasing towards a state of
maximum disorder at T > Tc.
ln the following, we have tried to introduce these
considerations into the evaluation of the free energy of
systems following the lsing model.
Real systems do not closely follow the lsing model,
except in the case of ferromagnetic salts with very low
T6, However, the lsing model is a good starting point
for interpretation of the behaviour of alloys with respect
to order-disorder transformations.
Kajitani and Cook (16) have shown that the f ree energy
of these alloys can be considered as the sum of two
components: one deriving from the lsing modeland
the other from the elasticity theory, as a result of two
contributions: the size difference between atoms and
the volume and shape change on ordering. With an
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improved approximation for the first chemical
component, it is possible to obtain a better
understanding of the ordering in real alloys.
Magnetic ordering has a strong effect on the shape of
the miscibility gap in binary systems with a
ferromagnetic and a magnetic component (17). The
present empirical treatments will be reviewed and a
suggestion for developments in this field advanced in
the last paragraph.

Termodynamic quantities for lsing
model systems

ln the lsing model the species, such as atoms for alloys
or spins for magnetic substances, occur at lattice sites
and an interaction energy of the semi-classical type
occurs between pairs of species. Spin interaction
occurs only between the spin z components, whilst
there is no interaction between the x and y
components. This model corresponds to extreme
magnetic anisotropy.
Other assumptions considered in the original model,
and which could be removed in principle. regard the
limitation of the spin value to the s : +72 case and
taking into account nearest neighbours' (nn)
interactions only. Thus, only two spin orientations are
possible, parallel or antiparallel ; correspondingly there
are.only two occupation states for a site in a binary alloy
AB: occupied by A or by B, and for a lattice gas:
occupied or empty.
The OC approximation for a binary alloy assumes that,
for a total of N" sites, with Na sites of type A and Ns
sites of type B, the numbers of nn pairs Naa, N", aÀd
Nas (assumed equal to Nea) are determined from the
mass balance equations :

+: NBB + NAB (1)

where z is the first shell coordination number and,
from a quasi-equilibrium between the pair numbers,
a consequence of a reaction between the pairs
AA + BB :2 AB, with the equilibrium constant:

o - -N'oB 
-..- Aen.o : N;frt", : exp a;t (21

From Eqs. (1) and (2) we obtain:

Nne:2N"9(1 -g)/(1 + 9) (3)

where9:Na/Nrand:

g:{1-4I (t - g) t1 - exp (- Ae/KBT)l}1/2 @)

+:N44+N4s;



The free energy for the lattice configurations is
obtained (14) from an entropic term taking into account
the number of lattice configurations for the pairs:

or: (1122 N") l/ [Nao ! NBB I (Nnel)'] (5)

normalized to the right total number of configurations
for the atoms, and an energy term taking into account
the potentials for the single atoms and the potential of
average force or nn interaction parameter:

-Ae:taa*ess-2tas (6)

The long range order parameter 11 is related to the
occupation degree 9, through n : 2 I - 1. The
configurational free energy F6 as a function of 11 for the
OC approximation (14), in the case Na: Ne : N,/2, is
given by:

Fc - Fc (1)
t/, N,GT 

:

:(1+11)ln(1 +n)+(1 -n)ln(1 -n)-21n2+ 17)

. + I 
(1 +n)ln *reft *r, -n) rn*Èft -r^ +]

where Fc (1) is the configurational free energy at n : 1 .

Eq (7) represents an improvement with respect to the
most simple BW approximation, because it takes into

account the influence of the Ae parameter on the
number of configurations, that is on the entropic term.
Differentiating Eq. (7) twice with respect to 4 and
equating it to zero, at T6 and g : 112, we obtain the
critical parameter:

-Ae
,Krlt from the equation:

zlBg+2-z:0 (8)

where 9c : exp (- Aei2KeT) Eq (B)gives:

-Ae
2KBTC

The numerical values of these parameters are a good
measure of the accuracy of the f ree energy calculation
near Ts. They are compared, for the various
approximations, in Table 1.

The BWapproximation gives r.ffi: L,rnur.

is a very rough approximation of the parameter.
Also the values obtained with Eq. (9) are far from the
exact values for 2D lsing systems. The approximation is
better for 3D systems, but even in this case BW
approximation is out by about 25o/o and QC
approximation by about 10oó.
The CV method gives a better approximation of the
configurational entropy S6/KB, summing over all
possible distributions of the A and B atoms on the N,
sites the probability terms x(J)lnx(J), where x(J) is the

,z:tnr-z (e)

TABLE I - Critical parameter ^*- for the lsing ls - 1t2l model
2KsT6

APPROXIMATION

Lattice
_-t z \ ICC Exact

z BW (2lzl OC [ln =-] 
CV square or CV cube or or bestL- z triangle tetrahedron z'ln -Ae/2KsT6 known2l

1D

2D

4
6
I

12

Honeycomb
Square
Triangular
Kagomé
Diced

Diamond
Simple cubic
BCC
FCC

3 .66667
4 .50000
6 .33333
4 .50000
4 .50000

1.09861
.693'15
.40547
.69315
.69315

.69315

.40547

.28768

.18232

@

.82554

.5',I083

.43386

.29572
.43696
.30815
.19951

1.33211
.88137
.54130
.92124
.82899

.13977

.44060

.31756

.20420

1 .31696
.88137
.5493',I
.9331322
.9314 22

.13957

.44338

.3148',I

.20419

J
2

3/2
813
4t3

.50000

.33333

.25000

.16667

2t5
1t3
113
1t3

3D
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equilibrium probability that the system is in the
configuration J. ln the CV method the atomic
distributions are described by introducing n-lattice
points clusters (not only pairs) and their concentrations
(or better expectation values) xl') (J), where s is the
cluster type among those containg n atoms.
We can write, in this case too, mass balance equations
relating x[') to x[l1, and evaluate the number of
configurations for the distribution of atoms, pairs or
higher clusters in the lattice (1, 18). The entropy of the
system is then approximated by a sum over small
clusters (1 9).

s : Ka rn.. yl") rr x,\') (J) tn xÍ') (L) (10)

where y(fr)are integers, determined by simple reported
methods (20). The CV approximation is better than the
OC approximation, because it takes into account closed
configurations, ignored in the OC method.
The approximation results f rom the truncation of the
cluster sizes to small ones, otherwise the number of
independent variables (the correlation functions)
becomes exceedingly large. The approximation of the
critical parameters becomes aboulTok f or 2D systems
and 2o/o for 3D systems, as reported in Table 'l 

.

However, in critical conditions, fluctuations have an
influence at every length scale, and the limitatiorl of the
considered cluster's size impedes the increase of the
specific heat to the infinite value at T6. On the other
hand, at Tc the details of the system are not important
if we adopt a renormalization group strategy solution;
at every renormalization, the system does not change
its behaviour. This means that for thermodynamic
quantities it maintains its temperature. Then the OC
approximation, if adequately corrected, can give better
values of the critical parameter than the CV method.
What the OC approximation ignores is the interaction
between the averaged spins, in the second step of the
spin-block technique. We can take this into account in
the same frame, introducing a second quasi-chemical
equilibrium between pairs for the system after
decimation; with varied interaction energy.
We have seen that it is possible to obtain very good
values of the critical parameter, considering that the
interaction energy after averaging is double; that is:

(1 1)

where N!", Nha and Nrss are the number of pairs after
averaging, subject to the mass balance constraints:

: Nko + NLs

vt - N!r' -. 2 L,e
n;o : iko N'* 

:exP 
Gt

Z' Nn
n2
t'Ns:
n2
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titb" + ru!"
(121

where z' is the new nn coordination number for the
fixed points, and n is the number of atoms which have
been averaged. With this method we add a term to the
f ree energy value in Eq (Z) of the type:

AFc
7z N"KgT

: -#[ t,*.r1 r"{fr*
+ (1-n) r"++ -zn -y1

(13)

where
B':Ji-f r -n'z)[1-exp(-2ae Kur\y,/2 and
at Tc, Brc: exp (-Ae/KaTc).
We must also take into account that we have increased
the total number of configurations. Thus, we have
introduced a parameter K"s, function only of the
temperature, which divides allthe configuration terms
of the free energy.
To obtain the critical parameter we differentiate twice
the free energy with the new term, with respect to n,
and equate it to zero at T6 and for 4 : 0, obtaining:

(141
z z'/n - ' z:Ú9c BT tL

With the values of z'ln reported in Table 1 we obtain
values of the critical parameter very near to the exact or
best known ones; they differ by less than 1o/o for 3D
lsing systems and less than 1 .5% for 2D lsing systems.
With this method it is also possible to distinguish
between lattices with the same nn coordination
number, but of different type, such as 2D square,
Kagome or diced and 3D diamond. Examining the
values of z'ln, it is possible to suggest a method for
choosing the block. For 2D systems a good choice of z'
is that of the dual lattice, while n is the number of
atoms averaged to obtain the dual lattice. For 3D
systems the best choice for z' is 2; that is, we must
average the interactions of 5 or 6 atoms obtaining linear
chains,
The f ree energy f unction near Tg is given by:

Fc I 2t z' zl4-1 \ - Ae

-- 

I _-I I lN"KgT6 \ - r+1 n 1-lz'l2n / BKBTg

*, +[(1 +ay tn (1 +n)+(1 -4) rn (1 -.il-2tn2] +

. o# {z[(1 +n)tn(F+n)+(1 -n)rn(F-n)-2rn(F+1)]

+ --=- [(1 +n) ln (Fr+n)+(1 *n)ln (Fr-n)-zln(Fr+ 1)]]

(15)

ln Eq. (15) a second energy term has been introduced
to have azero value for Ug at infinite T.
The best choice of the Kus value at T6



TABLE 2 - critical values of thermodynamic quantities for 3D lsing
(s - 1/21 models

Lattice - F",/N"KsTs
CV23 IOC Best App21 OC

- U.,/N"KsT6
CV23 IOC Best App21OC

Diamond

Simple cubic

BCC

FCC

.81095

.75438

.73439

.71804

.83405

.77496

.75572

.74109

.8335

.77789

.75404

.74179

.23105

.12164

.082195

.049124

.8234

.7378

.2364

.1 198

.32332 .3232

.21867 .21996

.17245 .11201

.15132 .1 5156

is (r + #l ,with this value it is possibte to obtain a

very good approximation for the F6 value at Tg, as
shown in Table 2.
The U6 value at Ts depends on the behaviour of F6 as a
function of T, because Us is obtained from Fs through
the relation:

- Uc: tz o fc/t)
dT

where r : T/Tc is the relative temperature of the
system.
We have tried to see if it is possible to obtain a good
approximation of the thermodynamic quantities with
analytic expressions, even very near Tg, introducinq r
functions in the exponentlal term of B ànd Br, and irithe
series of terms deriving f rom the series of 

'

quasichemical reactions, consequence of the
renormalization steps.
ln fact, when the temperature T is greater or lower than
Tc the system changes its actual T after each
renormalization step, increasing T if T > Tg or
decreasing T if T < Tc (7).
The two last right terms of eq. ('15) become at T ( T6 or
T > Tc an infinite series of terms containing g- and FL,
where:

9- : 1 +(1 -n2) [i -exp(-f 1(r)Ae/Ker)]-] and

9r- : t +(1 -n2) ['l-exp(-2f r (r)Ae/Ker)]-l witt-r

f 1 
(r) : T2m-1 +T-2m at T<1 and

f 1ft):21-z^-T1 -2m+1
at r>1 ; and are multiplied by

f2 (r):(-al(n-.(b-r-t2 -r4))/K" at r<1 and

f2(r) : (-al(n-.(br2+br4- 1))/K" at r> 1 ; with

Ku:1- . =3--------f -+ arr<1 and' b-t-r'-f* ?=, n-

K":1- s. 1

(br2+br4- 1 ) (r1 5+9t-1 5)f 
,

t -:atr>1.
L nttt

Also Ku6 value becomes a t function; we have
introduced the following expressions :

..2'Io2K"o: f ( p?*t-2+òra+ero) 
at r<1, and

y - , z' 
- 

z' I a'2
'\ao 2n n \9'r4 1+4 7---(5 9+5 3) *y't-3a4

+ò'r-2+e'ral at r>1
depending on the considered tJni." and with the

iz'
constraint Kuo: 'l + ;- at r: 1 .

The values of the internal energy at r : 1 are reported
in Table 2, and the n and Cy/R values calculated for the
diamond lattice in Figs. 1 and2, togetherwith the
experimental data for the spontaneous magnetization
and magnetic specific heat on the magnetic salt DyPOa
(24), which closely follows the lsing model. The
parameters introduced to obtain these data are:

- two parameters: a and b for the calculation of 4 as a
functionof tatr< 1;

- one parameter: the value of dKus/dr for obtaining
the right value of U6.,/N,KsTs;

- three parameters: y, ò and e for the calculation of
Cy at r < 1 (o and B being fixed from the values of
K36 and dK"5/dt at r : 1 );

- three parameters: y', ò' and e' for the calculation of
Cy at r > 1 (q' and B' being fixed for the same
preceding constraints).

These parameters and the temperature functions have
been determined by a fitting procedure, and the results
obtained show that it is indeed possible to obtain a very
good approximation of the thermodynamic quantities
for lsing model systems by analytic expressions with a
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. experimental

- 
lsi6g model IQC

Fig. 1 - Temperature dependence of the order parameter for the diamond lsing
lattìce, calculated with the improved quasichemical {l0C) approximation.
Comparison with the spontaneous magnetization of DyPOa, derived from the
magnetoelectric susceptibility {24).

Fig. 2 - Configurational specìfic heat calculated with the l0C approxìmation for the
diamond lsing lattice. Comparìson with themagnetic specific heat measured on
DyP04 crysrals (24).

VoL3 [2](1985)

limited number of parameters.
These calculations have been made so to be able to
obtain values of the thermodynamic quantities from
analytic expressions for application purposes. Thus, it is
possible to compare experimental magnetic results
with these values and to suggest how to change the
analytic expression to follow the experimental results,
if the system does not closely follow the lsing model. ln
the following we will show the application of these
expressions in the study of order-disorder phenomena
in typical alloys.

Order-disorder transformations in
alloys

The lsing model is usually adopted to explain the
ordering behaviour in binary alloys. However, this is not
the only contribuîion to the configurational free energy
of solid solutions; Cook and de Fontaine (25) have
shown that an elastic free energy contribution must
also be considered as a consequence of the different
atomic sizes of A and B. Furthermore, Kajitani and Cook
(16) have shown that the possibility of an overall
change in crystal shape on ordering must be taken into
account.
We have added this elastic energy contribution to the
configurational free energy, calculated for the different
lattices with the IOC approximation.
Ordering of B brass has been extensively studied, as a
typical example of second-order ordering transition.
Long range order dependence on the temperature has
recently been measured by X-ray diffraction (26) and
neutron diffraction (27), obtaining results in good
agreement.

we calculated rlfrom a (Fqtì Td : 0, where Fc is
dn

the configurational free energy of the lsing lattice plus
the elastic contribution suggested by Kajitani and Cook
AF"/RTg - -c n4, with c : .0299.The results are
presented in Fig. 3 and show the same type of
approximation as obtained by Kajitani and Cook, from
the Monte Carlo results of Flinn and McManus (28), for
the same rigid lsing model, corrected, introducing the
elastic energy term.
We have calculated the configuration specific heat for
this ordering transition from the same configurational
free energy. The results are presented in Fig. 4 and
compared with measurements from thermal
experiments. The results show a close agreement
between the experimentalvalues and the calculated
ones for the disordered system. At r < 1 there is a
marked discrepancy, which can be related to the
difference shown in Fig. 3 for the long range order. lt
seems that the influence of the elastic energy term is
not only an energetic influence, but there is an effect on
the entropic term, which could be taken into account



î
1.0

i experimental

- 
lsing model IQC +
+ size effect and shape change

Fig. 3 - Order parameter n for p-brass, measured by neutron diffractìon (27) and.
calculated from the configurational free energy for the BCC lsing lattìce plus an

elastic term for size effect + shape change.

Fig. 4 - Configurational specìfic heat for the ordering reaction of B-brass, from
thermal measurements {29) and calculated from the lsing model with lOC

approximation with addition of an elastic energy {16).

varying the r functions for the temperature change at
each renormalization step.
We have also studied the ordering transformation in
CuAu. This transition is first orderwith a finite latent
heat at T6. The addition of the elastic free energy term,
with c : .251 according to Kajitani and Cook (16),
makes the transition of the first order type, also in
agreement with earlier results of Tachiki and Teramoto
(30). The condition that the c value must satisfy, in

Cv
R

. experimental_ lsing model IQC +
+ size effect + shape change

Fig. 5 - Order parameter 4 for Cu-Au alloy, measured by X+ay diffraction (31 ) and

calculated from the configurational free energy for the FCC lsing lattice plus an

elastic term for shape change (1 6).

order that the transition changes f rom higher order to
first order, is obtained from the third derivate of the
configurational free energy with respect to 4, and is
given by:

zzz'z'z-2c> 168. - 48p%-+7r@- 24"fl 24 ta1

Calculation of n at T6 gives îc : 0.9665 for CuAu, and
this value is very close to the 0.97 value obtained by
Roberts (3t I 5U X-ray diffraction measurements. The
dependence of 4 on r is reported in Fig. 5 and it is much
closer to the experimental values than that obtained by
the CV method (32).

Magnetic ordering effect on phase
stability of alloys

Magnetic ordering can influence alloys' phase stability,
and as a consequence the phase equilibria in
ferromagnetic alloys, This was shown a long time ago
by Zener (33) for the Fe-Cr system; by Hillert, Wada and
Wada (34) for Mn partition between austenite and
ferrite or cementite; by Harvig, Kirchner and Hillert (35)
for Cu solubility in ferrite; recently by Nishizawa,
Hasebe and Ko (36)for Be,P,Zn solubility in ferrite and
for Al, Ti, Zn solubility in Co; and by Nishizawa et al. (37)
for the influence of magnetic ordering on the behaviour
of miscibility gaps in ternary systems.
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Sklarz and Wayman (37) have pointed out that the
ferromagnetic transition also has an effect on the
segregation of elements at the grain boundaries of iron
alloys.
The magnetic free energy term is obtained empirically
(17), integrating the magnetic specific heat, whose
dependence on r is given through a simple fitting
expresston.
Also, in this case an IOC approximation can be
introduced. ln fact, it is possible to describe the
Heisenberg model, in which the spins interaction is
isotropic. with reference, in this case, also to
quasichemical equilibria.
Elliott (39) has shown that this is possible if we
substitute in the expression of K.o the relationship:

,.tae
Keq : 

lexp K"T 
*

However, in this case also, we ignore the interaction of
the fixed point after each averaging, shown to be
fundamental to a description of the system at Tc by the

spins-block technique. lf we introduce this second
term, always doubling the interaction energy Ae, we
obtain an expression of the free energy whlch,
differentiated twice with respect to n, gives at Tc and
n : 0, the analogy of Eq. (14) for Heisenberg systems:

z 11 I z' 1

7tpZ-*t l*; -Fa;-*2-z:0 (18)

The critical parameters obtained with Eq. (1g) are
reported in Table 3 for 3D Heisenberg models, together
with the results of other methods (4,l) and of the 6est
known values, obtained from high-temperature
expansions (a0). ln this case, it is also possible to obtain
very good values of the criticalthermodynamic
quantities F",/N.KsTs and U",/N.KsT6, with an adequate
choice of the parameters: K"6 : 1 and K"
at r : 1, as reported in Table 4.
ln this way, it becomes possible to make a theoretical
evaluation of the magnetic free energy contribution for
ferromagnetic alloys.

\1^ 117)

TABLE 3 - critical parameter =;aj for 3D Heisenberg (s - ll2lmodels
2KBTG

I

$I
I

Í
;

I

APPROXIMATION

Lattice mean field"'"")'l)'"'" Oguchial Constant Bethe
couplingal PeierlsWeissal

toc
z'ln -Ae/2KsT6

Exact
or best

knownao

SC

BCC

FCC

6

8

12

.3333

.2500

.1667

.34965

.25707

.54915

.34674

.20276

.54025

.34483

.5974

.3998

.2508

.5952

.3968

.2488

1

1

1

TABLE 4 - Critical values of thermodynamic quantities for 3D Heisenberg
(s = 1/21 models

Lattice - F",/N"KsTs
IOC (K"6 : 'l) Best Knownao

- U",/N"KsTg

Best Knownaoroc
SC

BCC

FCC

1.009

.926

.895

1.031

.912

.886

.590

.465

.433

.598

.459

.433
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