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ABSTRACT

Despite the large number of existing alloys
and alloy databases, identifying proper alloys
for specific applications still remains a
challenge. In order to facilitate the selection
and prediction of aluminum die casting alloys
and their properties, an electronic database -
“i-Select-Al” -  has been developed by the
Advanced Casting Research Center (ACRC)
and the North American Die Casting
Association (NADCA). The key to the
predictions is the determination of a
relationship between alloy properties,
chemical composition, and processing
variables. Theoretically, these relationships
can be “accurately” determined using
fundamental physical principles. However, in
practice, the underlying mechanisms are not
fully understood and difficult to be utilized. In
this case, approximate empirical models are
considered. In version 1.0 of the software
trend equations have been generated. The
nature of these trend equations limits the
applicability and prediction ability of the
software. In order to improve the prediction
power; relationships based on an artificial
neural network (ANN) were exploited in
version 2.0. ANN has proven to be a highly
flexible tool, suitable to treat multiple-input
conditions and nonlinear phenomena with
complex relationships between input and
output variables. This article presents the
working mechanisms, the programming, and
the application of ANN in this project. The
results show that ANN is a valuable modeling
tool for predicting properties- from-
composition and composition- from-properties
for aluminum die casting alloys. 

RIASSUNTO

Nonostante l’elevato numero di leghe di
alluminio disponibili, l’identificazione delle
leghe appropriate per specifiche applicazioni
rimane un compito arduo. Al fine di facilitare
la selezione della lega più appropriata e di
predirne le caratteristiche, un database
elettronico – “i-Select-Al” – è stato sviluppato
congiuntamente dall’Advanced Casting
Research Center (ACRC) e dalla North
American Die Casting Association (NADCA).
Punto nodale della predizione è la
determinazione della relazione tra le
proprietà della lega d’alluminio, la
composizione chimica e le variabili di
processo. In teoria, queste relazioni possono
essere “accuratamente” determinate partendo
dai fondamentali principi fisici. Tuttavia, nella
pratica, i meccanismi di funzionamento che
stanno alla base della teoria non sono ancora
completamente noti e quindi difficili a
utilizzarsi. In tal caso si adoperano modelli
empirici approssimati. Nella versione 1.0 del
software vengono generate le equazioni di
“trend”. La natura di queste equazioni limita
l’applicabilità e la capacità predittiva del
software. Al fine di migliorare la capacità
predittiva del software, nella versione 2.0
sono state impiegate relazioni basate su reti
neuronali artificiali (ANN). Le reti neuronali si
sono dimostrate essere strumenti flessibili,
adatti al trattamento di sistemi multivariabili e
fenomeni non lineari che presentano relazioni
complesse tra i dati di ingresso e quelli di
uscita. Il presente lavoro illustra i meccanismi
di funzionamento, la programmazione e le
applicazioni di reti neuronali alla predizione
delle proprietà di leghe d’alluminio. I risultati
mostrano che le reti neuronali rappresentano
validi strumenti di modellazione per la
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INTRODUCTION

Selecting mate rials, ex p l o ring th e

potentials of a material, or tailoring the

ingredients or properties of a material for

given applications are the questions which

almost every manufacturing engineer has

to face. In order to fa c i l i ta te mate ri a l

selection, various graphs, tables, electronic

d a tabases, ex p e rt systems, etc. we re

developed; however, none of them was

predizione di proprietà-dalla-composizione e
composizione- dalle- proprietà di leghe
leggere d’alluminio.
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devoted to meet the specific needs of the

aluminum die casting industry. Moreover, in

most of the existing resources there is only

the “selection” ability, i.e., the ability to

select an alloy to meet specific property

requirements or vice versa. The existing

resources lack the “prediction” ability, i.e.,

the ability to predict the properties from a

given chemical composition and vice versa.

The prediction ability is very useful and

essential in optimizing or tailoring an alloy

and for fully utilizing an alloy’s potential,

and in developing new alloys. In th i s

context, and based on the needs of the die

c a sting indust ry, AC RC and NA D CA

initiated a project to develop an electronic

tool specific to aluminum die casting alloys

that is capable of both alloy selection and

p rediction. The effo rt re s u l ted in th e

software i-Select-Al versions 1.0 and 2.0 [1,

2]. This paper will briefly introduce work

done to develop and construct the software

with particular emphasis on the version

2.0. 

Fig. 1: Flow chart for alloy selection in version 1.0 of i-Select Al.
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DEVELOPMENT OF AN

ELECTRONIC TOOL FOR ALLOY

SELECTION AND PROPERTY

PREDICTION

The tool was designed so as to have two

primary functions: selection and prediction.

The selection function allows identifying

ex i sting alloys that meet specifi e d

re qu i rements. The selection could be

p e rfo rmed by inputting the re qu i re d

properties and the software selects the

alloy chemistry, or by inputting the alloy

composition and software finds a matching

(or closest matching) existing alloy(s), and

also by inputting the alloy chemistry and

the soft wa re finds its pro p e rties. The

prediction function performs the same tasks

regardless whether or not the alloy existed.

In order to achieve these objectives, the

following was needed (1) a comprehensive

database to select from, (2) a method,

which related the chemical composition to

p ro p e rties and vice ve rsa, and (3) a

computer program that can perform these

tasks.

DATABASE DEVELOPMENT AND

PROGRAM STRUCTURE

The data and information for aluminum die

casting alloys can be found in various

sources, typically in standards, which are

available from different organizations and

d i ffe rent countries, and from va ri o u s

h a n d b o o ks, pro d u c e rs’ bro ch u re s ,

research literature, lab reports, patents,

c o mp u ter soft wa re, etc. During data

mining, we found more than 400 aluminum

die casting alloys. pre s e n ted in many

different formats and often the information

was inconsistent. Moreover, the available

data could have different reliabilities. Some

we re based on large numbers of

m e a s u rements using sta n d a rd i z e d

specimens in systematic studies under well-

c o n t rolled conditions, and oth e rs we re

obtained based on only a few specimens

w i th no info rmation about specimen

production and measurement conditions.

After analyzing the available information,

we discarded some alloys, most ly old,

obsolete ones, and ones with uncertainties

in the way of measuring their properties,

and some that were repetitions. After this

elimination process, about 300 alloys

remained. These alloys we re sorte d ,

fo rm a t ted consiste n t ly, ta b u l a ted into

groups and used as the database. 

For building the interfaces and writing the

programs necessary for the electronic tool,

two issues needed to be decided upon first.

One is the pro gramming language fo r

writing the codes, and the other is the

criteria for the selection procedure. 

A fter rev i ewing seve ral commerc i a l ly

available soft wa re packa ges, Micro s o ft

Access was selected and used for this work.

M o st personal comp u te rs (PCs) have

Microsoft Access as part of their standard

software package. 

The criterion for the selection procedure

a d d resses qu e stions such as how close

should an alloy be to the input parameters

in order to qualify as potentially meeting

the requirements. For example, if a user

i nputs a few pro p e rty values as

requirements for selecting an alloy, and if

the database does not contain an alloy that

exactly meets these requirements, but it has
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some alloys that partially meet them. Here,

the criteria decide whether these alloys that

partially meet the requirement, should be

presented as selection or not

The program structure for alloy selection in

version 1.0 of the software is shown in Fig.

1 and a typical interface is shown in Fig. 2.

All the interfaces were designed to be self-

explained and user friendly. The software

presents as much information as available

and provides various functions to meet the

u s e rs’ needs and the databases we re

designed to be accessible to the advanced

user for adding his/her own data.

The key to alloy prediction is knowing the

relationships bet ween ch e m i c a l

composition, processing parameters, and

properties. Much of this information exists

in the open literature and may be divided

i n to two ve ry ge n e ral cate g o ries: (1)

Relationships that are based on physical

principles and reflect the essence of the

p rocess and the physical and ch e m i c a l

interactions among the factors, and (2)

Relationships that are obtained by

m a thematical means that treat ex p e ri m e n ta l ly

o b tained data as numbers and manipulate th i s

d a ta to obtain relationships bet ween th e

independent and dependent va riables with o u t

e mphasizing physical meanings. This is th e

m ethod used in this wo rk.

First, a comprehensive experimental effort

was conducted at the Advanced Casting

Re s e a rch Center (AC RC) to re l a te th e

chemistry, microstructure, and performance

ch a ra c te ri stics of aluminum die cast i n g

alloys [3]. In this effort, we used a Taguchi

design of experiments [4]. 

E a rly in the effo rt, we used multiple

re gression analysis to deri ve tre n d

equations that relate alloy chemistry and

p ro p e rties. Multiple re gression analys i s

generates curves that fit the discrete data

o b tained from ex p e riments to allow

e st i m a tes at inte rm e d i a te points. For a

given property, this method seeks to derive

a single curve (an equation) that represents

the general trend of the data. No effort is

made to intersect every point, but rather

the curve follows the pattern of the points

taken as a group. These curves (equations)

are used to tell the direction in which an

element affects a property, but, in some

cases, the predicted values deviate from

the measured values. 

L a te r, we used a special analysis of

variables method (ANOVA) to derive the

t rend equations. This was a modifi e d

Fig. 2: A typical interface for selecting alloy chemistry from input properties (database obtained from

handbooks).

ANOVA designed especially for analyzing

data from experiments that were organized

using the Taguchi method [4]. The special

A NOVA method allows us to deri ve

fo rmulas for optimizing the pro c e s s

parameters. In fact, these formulas are the

t rend equations and th ey are used to

estimate the results (e.g. properties) when

the factors (alloying elements) are within

their te sted ra n ges, provided that th e

effects of the factors are linear and their

i n te ractions are negligible. Our

experimentally obtained data met these

requirements. The elements in the tested

composition ranges did not show significant

interactions with one another, and for most

of the elements the tested ranges were

re l a t i ve ly narrow, so assuming that th e

effects of these elements were linear in the

tested ranges did not produce significant

errors. These formulas were thus used as

the trend equations for the alloy prediction

module of i-Select-Al, version 1.0. Trials

w i th the soft wa re showed that its

predictions are in reasonable agreement

with measured values. 

DEVELOPMENT OF AN ARTIFICIAL

NEURAL NETWORK FOR ALLOY

PREDICTION

In order to overcome the limitations of using

t rend equations and to imp rove th e

p rediction ability of the soft wa re, two

d i ffe rent te ch n i ques we re inve st i ga te d .

These are: (1) the response surface method

(RSM), and (2) artificial neural networks.

We decided to use art i ficial neura l

networks in version 2.0.

Artificial neural networks have been widely

used in recent years in many fields and

continue to prove to be a highly flexible

modeling tool for science and engineering.

It is particularly suitable to treat those

phenomena that have multiple inputs and

have nonlinear and complex relationships

between the input and output variables.

Attempts, e.g. [5 and 6] have been recently

made to use artificial neural networks in

predicting the properties of some sand and

permanent mold casting aluminum alloys. 

The Structure of the Artificial Neural

Network – Artificial neural networks are

born from developing intelligent systems by

simulating the biological st ru c t u re and

function of the human brain. The theory of

neural networks is based on neurobiology,

m a thematics and physics. The basic

element of the neural network is the neural

cell, the neuron. In ge n e ral, neura l

n et wo rks are ch a ra c te rized by th e i r

a rch i te c t u re, activation functions, and

learning algorithms or rules. About 40

n e u ral net wo rk models have been

proposed and studied. Each type has its
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i nput-output ch a ra c te ri stics and

applications. For the applications in which

both inputs and outputs are numerical data,

such as in this work, the most commonly

used network is the feed-forward multilayer

n et wo rk with back pro p a gation (BP)

t raining te ch n i que. This net obtains its

working ability through training the system

using the BP learning algorithm. It learns

the problems by examples like the human

brain. That is, it works based on its previous

experiences. The BP learning algorithm is

based on the principle of gra d u a l ly

minimizing the errors of the network output

by modifying the net wo rk para m ete rs .

Ne u rons in the fe e d - fo rwa rd neura l

network are arranged in a layered order.

Each neural network is composed of three

(or more) different layers: one input, one

(or more) hidden and one output layers.

Fig. 3 shows a fe e d - fo rwa rd net wo rk,

which has 1 input, 1 output and 1 hidden

layer. Each layer consists of a number of

neurons (nodes). This kind of network, in

which the neuron at a layer receives its

inputs only from neurons at the layer in

front of it, is called a feed forward neural

network [7]. It was this type of the neural

n et wo rk that was used in the pre s e n t

project.

In this network each neuron in the input

layer conveys an input value (information)

to the network and transmits it to the next

layer as value. The output layer is the layer

where the output values of the network are

generated. The numbers of neurons present

at the input and output layers are equal to

the input and output va riables of th e

problem, respectively. The hidden layer(s)

is placed between input and output layers.

The number of hidden laye rs and th e

number of neurons in each hidden layer

are critical for the convergence rate during

training and influence the learning time and

accuracy the network can achieve. There

a re curre n t ly no th e o ries or rules fo r

building the hidden layers. The number of

layers and the number of neurons in the

hidden laye rs are dete rmined by

experience and experimentation with the

problem at hand [7]. 

The Function of the Neuro n s – The

biological neurons show different reactions

to different input signals. To model this

effect, in the artificial neural network a

single number, called weight, is allocated

to each input so that each input is multiplied

Fig. 3: Structure of a feed forward artificial neural

network.

Inputs

X1

X2

Xn

Outputs

Outputs

Layer
Hidden

Layer

Input

Layer

Y1

Y2

Yn

by a weight befo re being sent to th e

neuron. The neuron receives the inputs and

p rocesses them to ge n e ra te an output

th rough two functions: a summation

function and an activation function, as

shown in Fig. 4. In the summation function,

the weighted inputs are summed together

by simple arithmetic addition to produce

the activation, a [7]. 

a= Σ wixi=w1x1+w2x2 + ... wnxn (1)

In Eq. (1), w is weight, x is input and i is the

index of the input and the weight in the

input layer.

The neuron reacts to the activa t i o n

producing an output and this process is

described by the activation function. For the

type of neural network used in this project

the sigmoid function, σ (a), given in Eq. (2),

is used as an activation function [7], 

y= σ(a)= (2)

In Eq. (2), y is the output, a is the activation,

and θ is the threshold, and is equal to a at

y=1/2.

A neuron can receive multiple inputs, but it

can generate only one output. The output

of the neuron is tra n s m i t ted along th e

outgoing connections to serve as input to

subsequent neurons. 

The Back Pro p a gation Algori thm and

Network Training – The artificial neural

network is trained using data obtained from

experiments. Training is performed in order

to find the error by comparing the output

value of the network with the target value

and then minimizing the difference (error)

by modifying the weights. At the start of

t raining, the net wo rk cre a tes a set of

random weights between the neurons in the

successive layers and computes the outputs.

The calculated outputs are compared with

the target values and the differences are

the errors. According to the sign, plus or

minus, and magnitude of the error, the

p ro gram adjusts each weight so as to

reduce the total error. Then the calculation

is performed once again using the adjusted

weights in order to get a new set of outputs,

these in turn are compared with the targets,

and the weights are adjusted again. This

process is repeated until an acceptable

total error is reached. At this point, the

training is complete with the set of weights

Fig. 4: Function of the neuron.
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fixed and the program can be put in use. In

use, the neural network can be considered

as a black box into which you input the

independent variables to get the outputs,

the dependent variables, and you do not

need to know the physics behind th e

process.

The Delta Rule – The behavior of the

network is completely characterized by the

set of weights, so that any function E (error

function), which expresses the discrepancy

b et ween the desired and the actual

n et wo rk outputs, may be considered 

to be a function of the weights, i.e.,

E=E(w1,w2,…,wn+1), where wn+1 is equal

to the threshold θ. Therefore, optimizing

the weight vector will cause the output to

approach the target value, t. The delta rule

is the method that is used to optimize the

weight vector. It is based on adding a small

Δw, which is related to the calculated error,

to the weight w used in the last iteration of

the error function calculation, and

calculating the error again using th e

modified weight. If the right Δw is chosen,

the error should be reduced. The core of



output layer, Δwjk is given as:

Δwjk=ασ’(aj)(tp
j-yp

j)xp
jk (6)

w h e re σ’ ( a ) = dσ( a ) / d a, (σ’(a) is th e

a c t i vation function, defined in equ a t i o n

(2)), and xp
jk is the input from the k th

neuron in the hidden layer.

For a neuron in the hidden layer, the target

value is unknown, its learning rule (for the

k th neuron) can be written as:

Δwki=ασ’(ak)δkxp
ki (7)

δk= Σ δjwjk (8)

where δj=(tp
j-yp

j) and Ik is the set of neurons

that take an input from the hidden neuron k.

In a fully connected network such as the

one used in this work, Ik is the whole of the

output layer [7]. 

The learning speed is governed by the

learning rate a. A small a will guarantee

stability of the network training but is rather

i n e fficient. If a is increased too much ,

learning will become unstable; the net will
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the delta rule is to find the right Δw for the

process. This is accomplished as follows.

For a layer with M neurons, for example

the output layer, the error E is the sum of

the errors e over all neurons.

Ep= Σ ej= Σ(tp
j-yp

j)2 (3)

and e is defined as:

ep
j=    (tp

j-yp
j)2 (4)

where p denotes the training pattern, which

includes a group of input sets (input patte rn )

and a group of the corresponding output set s

(output patte rn ) , j is the neuron index in th e

output laye r, t is ta rget and y is the output

c a l c u l a ted using equation (2) [7].

The Δw is given as:

Δwj=α (5)

In Eq. (5), α > 0 is a constant known as the

learning rate and governs the learning

speed. Based on equations (2) and (5) the

following equations can be derived [7].

For the kth weight of the jth neuron in the

m

j=1

M

j=1
1
2

1
2

δE
δwj

oscillate back and forth across the error

minimum, or it may wander aimlessly

around the error landscape. In some cases

where a is too large, learning is “bumpy”

with many undulations. In order to improve

the stability of the network training, the

momentum term λΔw(n-1) is introduced

into the learning rule. It is the momentum

c o n stant λ( 0 <λ< 1 ) multiplied by th e

previous weight change [7]. 

The computer program in this project was

written using a back propagation training

algorithm and the above delta training

rules. The program considered only alloy

chemistry and alloy properties and did not

consider other fa c to rs such as cast i n g

conditions, cast part dimensions, et c .

Ac c o rd i n gly, only data that was obta i n e d

using similar measurement pro c e d u res on

sta n d a rdized te st specimens that we re

p roduced by similar casting conditions wa s

used in training the soft wa re. Re l evant data

on 40 alloys was used for training the neura l

n et wo rk. The data was obtained at AC RC by

m e a s u rements of pro p e rties of alloys with

p re c i s e ly controlled compositions and also

f rom some sta n d a rd alloys .

RESULTS AND DISCUSSION

Figs. 5, 6, and 7 show comp a ri s o n s

b et ween comp u te r- p re d i c ted and

measured yield strength, elongation, and

thermal conductivity for 25 different alloys.

In these figures, alloys 1 to 24 were used in

training the neural network and alloy 25

was used to gage the accuracy of the

c o mp u ter prediction. Similarly, Fig 8

s h ows comp a risons bet ween th e

Fig. 5 Predicted and measured yield strength of 25 alloys. Alloys 1 to 24 were used in training the network,

and alloy 25 was used for gagging the accuracy of the computer prediction. 
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SUMMARY AND

CONCLUSIONS

The artificial neural network is a powerful

tool for treating phenomena that have

multiple inputs (independent variables) and

have nonlinear and complex relationships

between the input and output variables. In

predicting the composition and properties

of aluminum die casting alloys, the artificial

n e u ral net wo rk gives ve ry small erro rs

between the input and target values for the

t raining sets of data and has good

a c c u racy in predicting alloy pro p e rt i e s

f rom alloy ch e m i st ry. The accuracy in

c o mp u te r- p re d i c ted and the ta rget

ch e m i st ry of 2 alloys. One alloy, alloy 8,

was used in training the neural net wo rk

and the second alloy, alloy MPI380, wa s

used for gagging the accuracy of th e

c o mp u ter prediction. 

We notice that the accuracy is a little

l ower when predicting alloy ch e m i st ry

f rom alloy pro p e rties than when

p redicting alloy pro p e rties from alloy

ch e m i st ry. This is pro b a b ly re l a ted to th e

ratio of inputs to outputs used in th e

t raining for each case. The ratio of inp u t s

to outputs is 10 to 5 in the late r, and 5 to

10 in the fo rm e r. The results in Figs 5, 6,

7, and 8 show that the erro rs bet ween th e

output and the ta rget values for th e

t raining data sets are ve ry small. 

j∈1k
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Fig. 6 Predicted and measured elongation of 25 alloys. Alloys 1 to 24 were used in training the network,

and alloy 25 was used for gagging the accuracy of the computer prediction.
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Fig. 7 Predicted and measured thermal conductivity of 25 alloys. Alloys 1 to 24 were used in training the

network, and alloy 25 was used for gagging the accuracy of the computer prediction.

Alloy

0

160

140

120

100

80

60

40

20

0

2 4 6 8 10 12 14 16

Target

Predicted

18 20 22 24 26

Fig. 8 Predicted and measured compositions of alloys 8 and MPI380. Alloy 8 was used for training the

network and alloy AMC380 was used for gagging the accuracy of the computer prediction.
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predicting alloy chemistry corresponding to

a specified set of alloy properties is not as

good, but is reasonable and useful. The

success of the art i ficial neural net wo rk

depends to a very large extent on the

database that is used in training it. The

accuracy, quantity of entries, and coverage

of the database determine the accuracy

and cove ra ge of the art i ficial neura l

network. The accuracy and coverage of this

artificial neural network can certainly be

i mp roved by enri ching the data b a s e .

While this effo rt considered only th e

prediction between alloy chemistry and

p ro p e rties, it is possible to incorp o ra te

other factors such as casting conditions,

cast part dimensions, etc. into the network.


