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1. INTRODUCTION

The industrial demand of thin-wall castings in aluminium alloys is of great
importance in order to produce light components. The production of thin-
wall castings is limited by the fluidity of the molten metal. The fluidity is
influenced by many factors that can be divided into metallurgical and  mould/
casting variables. The metallurgical factors are the composition, superheat,
latent heat, surface tension of the melt, including oxide film, and mode of
solidification. The mould/casting factors are heat transfer coefficient at the
interface, mould temperature and mould conductivity. Many researchers
have investigated those factors and some of the main results are reviewed
in this study.
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Abstract

Fluidity of molten metals is of significant importance in producing sound castings,
particularly thin-walled castings. To meet the industrial demands of complex shaped
castings, the knowledge of the parameters affecting fluidity is required in order to have
a better control of the production processes. Since fluidity is one of the measures by
which the castability of metals can be quantified, a definition and a description of castability
are presented in this study. A definition of fluidity follows. Fluidity depends on many
factors and this study reports the influence of the main factors: alloy composition, heat
of fusion, superheat, grain refinement, modifying agents, mould material and temperature,
melt cleanliness, coating and viscosity.

Riassunto

Lo studio della fluidità delle leghe di alluminio da fonderia
sta diventando molto importante, soprattutto nella
produzione di componenti a sezione sottile. La realizzazione
di componenti dalle forme geometriche sempre più
complesse richiede una maggiore conoscenza dei parametri
che influenzano la fluidità e un maggiore controllo del
processo di produzione. Poichè la misura della fluidità
permette di valutare la colabilità delle leghe di alluminio
da fonderia, una definizione e una descrizione della colabilità
sono presentate in questo studio. La fluidità delle leghe di
alluminio da fonderia dipende da molti parametri. Questo
studio rivolge particolare interesse ai principali parametri
che influenzano la fluidità: composizione chimica della lega,
entalpia, temperatura di colata, raffinamento del grano,
agenti modificanti, materiale e temperatura dello stampo,
qualità del metallo fuso, rivestimento dello stampo e
viscosità della lega.

2. CASTABILITY

The castability of a metal describes its ability to
be cast without defects and to reproduce the
mould pattern with the desired properties of the
final casting [1]. It involves many different
phenomena such as: mould-filling, feeding, porosity,
macrosegregation, hot-tearing and fluidity. A sketch
of those phenomena is shown in Figure 1.

2.1 MOULD-FILLING

A good mould-filling metal has the ability to fill
out the mould pattern and reproduce fine details
of the mould. Mould-filling is strongly dependent
on the surface tension between the mould and
the metal. Therefore it is affected by the mould
characteristic, melt composition and melt
cleanliness. The pressure in the metal will also have
some effect on mould-filling [1,2].

2.2 FEEDING

Feeding is the process where material movement
occurs to compensate the shrinkage during
solidification. Feeding is one of the most important
and critical phenomena to consider in order to
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gradients can arise. ‘V’ segregates and ‘inverse segregation’ (segregation
towards the ingot wall) may form [1]. Moreover, thermo-solutal and forced
convection in the interdendritic liquid can cause macrosegregation.
Macrosegregation reduces the quality of most castings.

Fig. 1: Illustration of the phenomena related to the definition of castability [20]:
(a) mould-filling, (b) fluidity, (c1) feeding, (c2) porosity, (d) macrosegregation,

(e) hot-tearing

achieve good quality castings. Incomplete feeding
causes porosity in the poorly fed regions or in
surface depressions. Campbell [1] has identified
different mechanisms by which feeding can be
achieved in a casting, depending on solidification
conditions. There are principally five different ways
by which material may be transported, although
not all are expected to be operating in each casting
[1]. The feeding processes operate in different
ranges of fraction solid in the solidification interval.
As the local fraction solid increases, feeding can
occur due to liquid feeding, mass feeding,
interdendritic feeding, burst feeding and solid
feeding. Figure 2 shows a scheme of the five feeding
mechanisms.

2.3 POROSITY

Porosity in a casting is attributed to both
solidification shrinkage and high gas content.
During solidification, pure aluminium and
aluminium alloys contract. The inability of the
molten metal to feed through the interdendritic
regions causes porosity [1,2]. Moreover, even with
perfect interdendritic feeding, porosity can form.
When a liquid metal is trapped with completely
solidified metal all around, hot spots form. When
a hot spot solidifies and contracts, a macropore
will form, unless extensive solid feeding occurs.
Because most gases reduce their solubility with
the temperature during solidification, gas rejection
processes also causes porosity. Therefore porosity
is strongly dependent on the internal pressure and
on the gas content of the molten metal [1,2]. In
order to decrease porosity and achieve good
quality castings, the gas content, particularly the
hydrogen content, has to be low.

2.4 MACROSEGREGATION

Macrosegregation is due to movement of liquid
and solid within the mushy zone [2]. Highly
segregated phases are present within the mushy
zone during solidification. Physical displacement of
these phases leads to macrosegregation. The
displacement can occur by floating or settling of
precipitated phases early in solidification. Equiaxed
grains form early in solidification and, since they
are not attached to other grains, they may float or
settle. Inclusions may float or settle [1]. This is the
macrosegregation due to gravity, but also shrinkage
can cause macrosegregation. Due to contraction
during solidification, movement of liquid and solid
occurs to feed the solidification shrinkage. Pressure

Fig. 2: Scheme of the five feeding mechanisms in a solidifying casting.
As the local fraction solid increases, feeding can occur due to liquid feeding,

mass feeding, interdendritic feeding, burst feeding and solid feeding [1]
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3. DEFINITION OF FLUIDITY

Fluidity, in the foundry science, is defined as the ability of molten metal to
flow before stopped by solidification [2]. Fluidity is quantified by measuring
the length a molten metal will flow when it is poured into a small cross
section channel. The small cross section channel provides conditions for
rapid cooling and large temperature gradient, which give good fluid flow [2,
3].
A mathematical model for estimating fluidity length was proposed by
Flemings et al. [2,3]. The model provides the following equation for calculating
the flow length Lf:

Lf = (1+K/2) (1)

where:
A is the mould cross sectional area;
ρ is the liquid density;
V0 is the flow velocity;
fscr is the critical fraction solid for flow stoppage;
DH is the heat of fusion;
cp is the specific heat of the metal;
DT is the melt superheat;
h is the heat transfer coefficient between mould and metal;
S is the circumference of the mould channel;
T is the temperature of the liquid;
T0 is the room temperature;
K is a constant depending on h, the heat transfer coefficient and, hence, the
resistance to heat flow (metal-mould interface).

In the development of the model represented by
Equation (1), it is assumed that [3]:
- solid particles form at the tip during flow in a

fluidity channel and travel downstream with the
liquid;

- flow stops when the mean solid concentration
near the flow tip reaches a certain value (critical
solid fraction fscr);

- flow velocity is constant until flow stops.
Equation (1) shows:
a) fluidity increases linearly with the increase of

superheat DT;
b) fluidity is not zero at zero superheat;
c) fluidity increases with increasing heat of fusion

DH;
d) fluidity increases with velocity of flow;
e) fluidity is proportional to the ratio of the cross

sectional area, A, and the circumference of the
channel, S.

The equation by Flemings quantitatively is in
reasonable agreement for the Al-4.5%Cu alloy with
the experimental data obtained with a vacuum
fluidity test [3]. However, the assumptions make
the formula difficult to apply to the different Al
based alloys. Reliable fluidity data for aluminium
casting alloys are not presently available, even
though those data are very important in the
optimisation of the casting properties of the alloys
[4], and there is a need for improved fluidity test
methods.

Fig. 3: Scheme of two fluidity tests: a) spirals test: the molten metal is poured in a
spiral-shaped mould; b) vacuum test: the molten metal is sucked through a tube

by a vacuum pump [2]

2.5 HOT-TEARING

The solidification shrinkage and thermal contraction can cause significant
stresses. The casting may tear in regions where the strength is still low.
Those regions are not completely solidified and hot spots occur [2]. The
formation of hot tears is due to a lack of feeding in the mushy zone. If the
casting is well fed and the permeability in the mushy zone is high, the liquid
can flow between the separating dendrites and heal the incipient tears.

Casting temperatures, freezing range and grain size
are important variables affecting hot tearing [2].
A low casting temperature is often beneficial for
reducing hot-tearing. Narrow freezing range alloys
show better resistance to hot-tearing. Grain
refinement reduces the hot-tearing  susceptibility
[1,2].

4. FLUIDITY TESTS

The most used tests for measuring fluidity are the
vacuum fluidity test and the spiral test. The first
method measures the length the metal flows inside
a narrow channel when sucked from a crucible by
using a vacuum pump. The second method
measures the length the metal flows inside a spiral
shaped mould. Those tests are shown schematically
in Figure 3.

AρV0(fscrDH + cpDT)

hS(T - T0)
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5. SOLIDIFICATION MODES

In the solute rich alloys with a wide solidification
range, fluidity is limited by choking. The flow is
choked by precipitation of equiaxed grains at the
leading tip of the flowing stream and by the
accumulation of solid crystallites [3].
Pure aluminium, dilute alloys and eutectics stop
by pinching because solidification proceeds
smoothly from the channel wall. Those different
mechanisms of flow stoppage are shown in Figure
4.
The hypoeutectic Al-Si alloys, that precipitate
dendrites with complex shapes, show lower fluidity
than hypereutectic alloys that precipitate simple
plate-like crystals [5, 6]. In a fluidity spiral test, solid
particles form during flow and travel downstream
with the liquid. The flow stops when the mean
solid fraction reaches a so-called “critical solid
fraction” [7]. Flow velocity is essentially constant
until the flow stops. In most fluidity spiral tests
the effective metal head is low and a small amount
of solidification near the flowing stream is sufficient
to stop the flow. With Al-4.5%Cu alloy and an
effective metal head less than 5cm, about 5% of
the solid is sufficient [7]. At higher pressures more
solidification can occur before flow ceases. In the
fluidity tests usually employed, and for most sand
castings, factors such as surface tension, surface
films or melt viscosity may be neglected [7].

Fig. 4:  Three types of solidification modes in the fluidity tests [20]: a) pure metals,
dilute alloys and eutectics stop by pinching because solidification proceeds smoothly
from the channel wall; b) solute rich alloys with a wide solidification range, stop by

choking and the flow is choked by precipitation of equiaxed grains and by the
accumulation of solid crystallites; c) third type of solidification mode with mixed

growth for the other cases

6. FACTORS INFLUENCING
FLUDITY: LITERATURE REVIEW

Composition is one of the main factors influencing
fluidity. Small alloying additions to pure metals
reduce fluidity [1, 2], and the fluidity of unalloyed
aluminium is reduced with decreasing purity [8].
Among elements which decrease the casting
fluidity of pure aluminium, Ti, Fe and Zr exert an
intermediate effect, while Cr, Mn and Cu have a
smaller effect [9]. Gowri and Samuel [10] studied
the A380 die casting alloy and observed that an
increase in the Fe content decreases the fluidity
of the alloy. The additions of 1.5 and 1.7%wt Fe to
the A380 alloy caused a decrease in fluidity of 4%
and 6%, respectively. The additions of 1.3%wt Zn
to the 380 alloy caused a decrease in fluidity of
5%.  However, the additions of  1%wt Cu to the
380 alloy caused a increase in fluidity of 4%.  No
significant change in the fluidity of the A380 alloy
was observed when 0.23 and 0.5wt% Mg were
added. Rooy [11, 12] reported similar reductions
in the fluidity of the Al-Si based foundry alloys with

the increase in Fe content. Wang et al. [13] reported a decrease in the
fluidity of molten aluminium with increase of Fe without any appreciable
change in the surface tension, due to an increase in the amount of insoluble
Fe-bearing phases that form in the alloy [13, 14]. However, Pfeiffer and
Sabath [15] observed that fluidity increased as the total combined
concentration of Fe, Mn and Zn was increased in an Al-8%Si-3%Cu alloy.
The variation of fluidity with composition in Al-Si alloys has been reported
by Lang [16] and is shown in Figure 5. The fluidity of pure Al decreases with
increasing Si content to the maximum solubility limit, at 1.65 wt%, beyond
which it remains relatively constant by further additions. At Si content higher
than 7-8 wt%, however, there is a remarkable increase in running length
towards a maximum at about 18 wt% Si (well above the eutectic composition
of 12 wt% Si). The fluidity of hypereutectic Al-Si alloys is better than that of
hypoeutectic and even eutectic compositions. One of the reasons is the
high heat of fusion of primary silicon [17]. The heat of fusion of primary
silicon is 4.5 times higher than the heat of fusion of  pure aluminium[18].
Moreover, in the Al-Si alloys, even at eutectic composition, aluminium
dendrites are present due to a skewed coupled zone [19]. The dendrites
disappear at a higher Si content than eutectic. Alloying elements can have
beneficial effects on fluidity [3,9,20] since:
- increase in superheat due to lowering of the liquidus temperature;
- change in temperature range over which solidification occurs;
- change in the nature of the primary crystals which are formed;
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- change in the nature of the oxide films.
Superheat, i.e. the difference between the melt temperature and the liquidus
temperature, is also a very important factor influencing fluidity. The fluidity
increases with increasing the melt temperature for a given alloy composition.
Kolsgaard [21] has reported that the fluidity length, measured with a spiral
test in sand mould, increases linearly by increasing superheat. The increase
by 1°C in the melt temperature gives an increase of 1% in the fluidity
length, in the temperature interval 700-760°C [21]. Sahoo and
Sivaramakrishnan [22] measured the fluidity of an Al-8.3%Fe-0.8%V-0.9%Si
with a standard spiral test in sand mould. They reported an increase of
0.4% in the fluidity length when the melt temperature increased by 1°C, in
the interval 860-900°C [22]. Deviating results on the effect of grain
refinement on fluidity have been reported in the literature. Mollard et al.
[8] showed a reduction in fluidity when 0.15% Ti was added to an Al-4.5%Cu
alloy, tested with a vacuum fluidity apparatus. Tiryakioglu et al. [23] found
no effect on grain refinement in A356 Al-Si alloy tested in a sand spiral test,
adding 0.04 wt% Ti as AlTi5B1 master alloy. Lang [16] found a significant
increase in fluidity with boron additions in the range of 0.04-0.07 wt% B to
Al-Si alloys, tested with a bar die casting. Dahle et al. [24, 25] observed a
more complex variation in fluidity with successive additions of AlTi5B1 in
AlSi7Mg and AlSi11Mg alloys tested with sand spirals. Fluidity was reduced
with grain refinement below 0.12% Ti, while it increased with additions
above 0.12% Ti. The fluidity length decreased 5% with 0.01%Ti and up to 9%
with a further addition of 0.12%Ti [25]. Alloys only grain refined by boron
showed the smallest grain size (the largest fraction solid at dendrite
coherency) and the best fluidity. Chai [26] investigated the effect of grain
refinement of an Al-4%Cu alloy with a vacuum fluidity apparatus, observing
that increased grain refinement correlated with increased fluidity and
increased solid fraction at coherency.  The effect of grain refinement on the

fluidity of Al based alloys depends on many factors:
type and amount of grain refiner, alloy composition,
holding time and temperature in the furnace. The
complex behaviour of grain refinement has been
recently explained by Greer et al. [27, 28, 29]. The
studies by Greer et al. give an explanation of the
controversial previous results.
Since fluidity is determined by phenomena
occurring at the initial stage of solidification, the
effect of eutectic modifying agents in Al-Si alloys
would not be expected to give any large effect
[20], unless the Si content is close to the eutectic
composition. The effect of additions on the
constitution and properties of the oxide skin may,
however, be more significant. Reported data [21,30]
show a slightly decreased fluidity with addition of
modifiers. Modification of Al-Si hypoeutectic alloys,
by adding Na or Sr, gives strength and ductility to
the casting. Plate-like coarse silicon particles are
converted into fibrous particles. Kotte [31] found
that both Na and Sr reduce fluidity to some extent,
but with Sr the reduction in fluidity was less than
with Na. Venkateswaran et al. [32] have studied
the effect of trace elements on the fluidity of
eutectic Al-Si alloys. Fluidity decreases with the
additions of  Na, Na plus Sr, Ti, Na plus Ti, Na plus
Sr plus Ti, while it increases with the additions of
S, Sb, Sb plus Ti, S plus Ti. Modification of Al-Si alloys
reduces fluidity up to 10% [8]. Sheshradri et al. [9]
found that the modification of AlSi12 reduced the
fluidity by 5% to 7% in a sand mould and by 2% to
3% in a cast iron mould. Lang [16] found that B
increases fluidity, while Na has the opposite effect.
Sahoo and Sivaramakrishnan [22] studied the effect
of modification by Mg in Al-8.3%Fe-0.8%V-0.9%Si
alloy on the fluidity. The found that the modified
alloys posses better fluidity than the unmodified
alloys. High purity magnesium was added to the
melt at 880°C temperature. The addition of 1%
pure Mg gave 15% better fluidity than the
unmodified alloy [22].
The influence of mould materials was studied by
Niyama et al. [17]. It has been shown that in vacuum
test, the fluidity in stainless steel tubes is higher
than in quartz tubes. Flemings at al. [7] found that
fluidity in fine grain sand was lower than in coarse
sand. Significant metal penetration was obtained
in the coarse sand spirals, which resulted in an
increase of the length of the spiral [21]. Fluidity in
green sand moulds was unaffected by change in
grain size, moisture content or by small addition
of sand additives such as cereal or sawdust [33].
Groteke [34] measured a very strong effect of the
melt cleanliness on fluidity. Up to 20%
improvement in fluidity was observed when the
melt was cleaned by purging with halogen gases in

Fig. 5: Fluidity of binary Al-Si alloys, poured at a constant pouring temperature of 800 °C
[16]. First, the fluidity length decreases as the silicon contet increases; afterwards the
fluidity lenght increases to a maximum value corresponding to about 18% Si content.
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7. CONCLUSIONS

A definition and description of castability have been
presented in this study. The definition of castability
involves many phenomena. A description of those
phenomena has been given.
A definition of fluidity and a literature review of
the main factors influencing fluidity have been
presented.
The review of the factors influencing fluidity has
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Between the alloying elements, Fe significantly decreases fluidity of Al
based alloys.
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effect of grain refinement on fluidity. The complex behaviour of grain
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· Melt quality: the oxide inclusions decrease fluidity, particularly at low
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· Coating: the Zr coating plays an important role in the enhancement of
fluidity.
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