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The use of microstructure parameters in constitutive equations for damage
evolution and failure prediction is under extensive study (examples: Mahesh
et al., 1999; Devillers et al, 1997). Microscale approaches are especially
important for modeling fatigue life, since the major source of failure is
related to small, non-uniform properties such as moduli, strength, residual
stresses etc. Recent multiscale models (Mura and Nakasone, 1990;
Papadopoulus, 1999) use types of maximum stress criteria on specific slip
planes, to define fatigue limit. Differential approach to fatigue damage,
including microstructure parameters has been studied also (Fedelich, 1998).
One of the first microscale approaches was to consider bundles of elements
having statistically dispersed properties and examine their collective
behavior. This model, originally proposed for textiles (Daniels, 1945), is
continuously developing, especially for fiber composites (Phoenix and
Beyerlein, 2000). Many microscale models have been proposed on damage
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Abstract

A statistical micromechanic fatigue model shows some of the main features of macro
fatigue behavior like S-N power law, endurance limit, Goodman diagram, etc. The
model correlates micro statistical damage parameters to the macro behavior. The
recursive evolution equation has been recently transformed to a nonlinear differential
form, which enables a simple analytic solution. Using these results, a two level (H-L)
fatigue loading case is modeled analytically, leading to a failure design formula which is
based solely on the one level  S-N data.  Specifically, the model predicts a generalized
“Miner type” behavior, which is controlled on the micro-level by the very basic strength
dispersion factor of the microelements, and on the macro-level by the S-N power
(slope). The proposed H-L predictions were tested by fatigue experiments on two
Magnesium alloys (AZ31 and AM50). Results showed good correlation, in spite of the
natural large scatter.

Riassunto

Un modello statistico di fatica a livello micromeccanico
rivela alcune caratteristiche del comportamento
macroscopico a fatica, come la legge esponenziale S-N, il
limite di fatica, il diagramma di Goodman, ecc. Il modello
correla il danneggiamento statistico a livello
microstrutturale col comportamento macro. L’equazione
di evoluzione ricorrente è stata recentemente trasformata
in una forma differenziale non lineare, che permette di
arrivare ad una semplice soluzione analitica.Usando questi
risultati, una situazione di carico affaticante a due livelli
(H-L) viene modellata analiticamente e porta ad una
formula di progettazione a durata basata unicamente sui
dati S-N ad un solo livello. Specificatamente, il modello
predice un comportamento “alla Miner” generalizzato, che
è controllato a livello microstrutturale dal fattore di
dispersione della resistenza dei microelementi, e a livello
macro dall’esponente della curva S-N (pendenza). Le
previsioni H-L fornite dal modello sono state state
verificate sperimentalmente tramite prove di fatica su due
leghe di Magnesio (AZ31 e AM50). I risultati hanno
mostrato una buona correlazione,a dispetto del naturale
elevato livello di dispersione.
Cordiali saluti

mechanics (McCartney and Smith, 1983;
Krajcinovic and Van Mier, 1999), using various kinds
of element properties (Zweben and Rosen, 1970;
Vujosevic and Kracjinovic, 1997; Mahesh, Beyerlein
and Phoenix, 1999). However, studies on fatigue
failure are still in demand.
The specific problem of two level (H-L) fatigue
loading is very old (Miner, 1945; Manson et. al.,
1967). It is the first multilevel loading step towards
random (realistic) protocols and shows a severe
deviation (for design purposes) from the classical
linear cumulative (Miner) prediction.
In spite of the enormous complexities on the
microscale, all materials exhibit a common and
simple macro failure response (S-N, da/dN-∆K).
Thus, it is plausible to model fatigue behavior by
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neglecting microstructure details, and consider
only micro properties that are necessary and are
common to almost all materials.
A simple micromechanic fatigue model, based on

the above “bundle approach” has been developed in previous studies (Altus,
1991; 1995) with realistic macro response such as the S-N power law,
endurance limit and Goodman diagram. This model is extended here to
receive an explicit H-L formula.
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Consider a simple model composed of an
ensemble of 1D linear elastic (until break)
elements. The array is organized as a parallel set
and loaded uniformly by a strain ε. All elements
have a stiffness E and a statistical strength
distribution F(ε), such that

(1)

and f(ε’) is the probability density function (pdf).
This simplified model can be visualized as an
idealized part of a polymer, where the elements
represent molecular chains, or a unidirectional
fiber composite, where the elements represent
fibers, or even metals, where grains are the basic
constituents. Motivated by the fact that all
materials exhibit similar “macro failure
appearance” (S-N, da/dN-∆K curves etc),
microstructure details are neglected (enormous
complexity).
Let a cyclic (fatigue) loading be applied such that
the macro stress ranges between σ

min
=0 and

σmax=σ0, i.e., R=0. During the first loading, weak
elements break and the remaining part sustains
the outer load. From 1-D equilibrium equation
one gets:

(2)

where E0 and ε1 are the elements stiffness and
the maximum strain of the first loading,
respectively. E0 is also the initial modulus of the
ensemble. F(ε

1
) elements (relative number)  break

during the first loading. Eq. (2) can be also written
as:

(3)

or (using(2)):

        1-F1 = E1 (4)

where B
m
 is the damage which occurs during cycle

m and Fm is a short writing for F(εm).
In real materials, local stress concentrations near
broken elements may lead to additional breaks

at the same loading cycle, but from simplicity reasons this possibility is
neglected here. However, the effect of broken elements on their non-
broken neighbors is taken into account in a different way. During the
consequent loading cycle, the local microstructure in the vicinity of each
broken element undergoes many types of relative movements due to
irreversible motions: friction, dynamic effects, local heating, bifurcation
states etc.  Without entering to a detailed analysis, the end result of the
local reorientation, between the first stress peak and the second can be
separated into two categories. In the first, the local neighbor strain is
higher than the one for a non neighbor element (strain concentration
higher than 1) and in the second it is lower. It is the first type, which is
fundamentally important for fatigue, since it is the main cause for cyclic
damage.
Each “interacted” neighbor of the first type has a different stress (or
strain) concentration factor,  according to the specific local micro-
geometry. From a statistical point of view, only two parameters are needed
for further analysis: the relative number of neighbors of the first type and
the average of this local stress (strain) concentration factor. In this study,
the analysis is simplified even further, by assuming a locally (near neighbor)
very high strain concentration, which practically causes definite failure
during the consequent cycle. It is also assumed that the reason for broken-
neighbor interaction depends on the initial local geometry only, i.e., a
non-interacting neighbor will not re-interact during subsequent cycles.
However, this type of neighbor can still fail as a non-neighbor element
when experiencing a strain, which is higher than all previous values.
Returning to the second cycle, F(ε

1
) “old” breaks cause their neighbors to

fail during the second loading. In addition, new isolated breaks also appear,
since the strain which is needed for the same stress, is higher for the
second cycle. Therefore, it is necessary to divide the damage during the
second cycle into two parts: Coming from expansion of old breaks, and
creating new sites (index a and b, respectively). Then,

(5)

(6)

(7)

where (4) has been used. Now apply equilibrium for the second cycle:

(8)

or, using (3,4) and (7):

(9)

The third cycle is calculated similarly:

(10)
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(11)

Using equilibrium as above, and rearranging we get:

(12)

Now, from (4),(9) and (12) it is easy to predict the solution for any cycle
n:

       n=1,2,…. (13)

Or:

(14)

Eq.(14) is a nonlinear implicit difference equation for cycle n, when the
information for the two previous cycles is given. It is valid for any given
strength distribution function F.
To have a specific fatigue response, a Weibull function is chosen for the
statistical strength of individual elements:

(15)

For the current parallel array, ε
s
 (statistically called “scale factor”) is the

strain associated with the maximum stress, which can be submitted under
monotonic (static) loading conditions. It was recently shown (Altus, 2001)
that by inserting (15) in (14) and converting the difference equation into
a continuous form, (14) can be transformed to a nonlinear differential
equation of the form:

(16)

where N is the number of cycles to failure under uniform cyclic stress
conditions. The conversion is valid when the damage in each cycle is small
enough, i.e., N>>1, which is the common fatigue case. Moreover, (17) has
an analytic solution of the form:

(17)

It is seen that the normalized damage evolution equation is invariant of
stress. The S-N power law has been also received:

(18)

where σs is the static (macro) failure stress. The relation between σs and
ε

s
 is:

(19)

The common design formula is σ=CNα, where C
and a are considered as two independent material
parameters. Practically, it is difficult to test if C is
related to β as proposed in (18), although a
positive correlation with (18) was found
elsewhere (Altus, 1995). This is since σ

s
 is

associated with fatigue failure after a single cycle,
where plastic processes, which are not taken here
into account here, are dominant. Fortunately, C
cancels out in the final H-L results.
The differential equations (16) is of the second
order, and needs two initial conditions (E(n) and
E,n at some n) for a complete solution. Having
these, an important relation is given by:

(20)
Thus, (20) gives a simple explicit expression (which
will be used later) to the remaining fatigue life,
when E and E,n are given.
The above micromechanic model relates the
macro “slope” of the classical “Wohler diagram”
to the statistical shape parameter (β) on the
microscale. For example, very large β values mean
that the microelements are uniform (no strength
dispersion), which, on the macro response yields
a minimal fatigue effect. Practically, many materials
exhibit the above power law (linear relation on
a log(S)-log(ν) plot and 5<β<20 is found for most
materials. Further generalization of the model
are given elsewhere (Altus, 1995, Altus and Jeulin,
2000).
The study in the following aims to explore the
fatigue life predictions for the two levels High-
Low case.  The engineering importance of this
loading sequence stems from the fact that the
fatigue life is usually much lower than the simple
“Miner law” predictions. While many studies have
been focused on this problem, the models are
still phenomenological (Hashin and Rotem, 1978;
Hashin, 1980; Manson and Halford, 1986).
Two simplifying assumptions of the model in its
present form are:  a.) At each cycle, all new cracks
are “evenly spread”, and old ones do not coalesce,
and b.) The crack “size effect” is neglected, i.e.,
the cyclic crack growth rate is equal for all
microcracks. These approximations are valid as
long as the major damage progression comes
from many small microcracks, rather than from
a single macrocrack. Since the major portion of
fatigue life is spent before a single dominant crack
is observed, model predictions can be still useful.
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Consider the case where the specimen is loaded
first n

H
 cycles at a stress level σ

max
=σ

H
 (σ

min
=0)

and the rest at σ max =σL until failure. Damage
evolution of the different stages of the process
is illustrated schematically in figs.1.
The H part (until point A in fig.1) is calculated
directly from the analytic solution of the one level
loading (17):

(21)

where NH is the one level (high) fatigue life and
E

A
 is the stiffness at n

A
.  When changing from σ

H

to σL (From A to A’ in fig.1), the maximum cyclic
strain decreases by a ratio equal to σ

H
/σ

L
. Since

the non-neighbor (new cracks, i.e. Bib) breaks
appear only when experiencing a strain higher
than all previous strains, there is an intermediate
stage (from A to B in fig 1), when only the old
cracks are expanding, and there are no new crack
formations.
Therefore, the damage rate of this stage is
constant and equals to E

,n
(n

H
), i.e.,

(22)

which remains constant as long as the maximum
cyclic strain is lower than the largest strain
experienced in the whole loading history.  At point
B, The strain reaches its value from A again, and a
third regime of damage evolution starts. Then,
using (20) we have

. (23)

Therefore, the number of cycles at the second
stage is:

(24)
When the cyclic strain reaches εA again (point B
in fig. 1), the cyclic process continues in a one
level form, associated with σL, erasing the damage
“history”. Therefore, the residual fatigue life can
be directly calculated by (20):

Fig. 1: Stiffness evolution of H-L loading

. (25)

Using (22-25) we obtain a simple expression for the third stage:

. (26)

The fatigue life of the above three stages are added to give:

. (27)

From (18):

. (28)

Inserting (28) in (27) and rearranging, we finally obtain:

. (29)

where

(30)

or

 . (31)

Eqs.(29) and (31) express an explicit prediction of fatigue life under H-L
loading sequence. Since λ(β,N

H/L
) is independent of n

H
 or n

L
, (29) appears

as a straight line on the familiar  (nH/NH, nL/NL) space, and can be considered
as a generalized “Miner type” relation. Previous models (Manson and
Halford, 1986) proposed a “double linear” rule,  but were
phenomenological. Note that (29) depends solely on the power of the S-
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N Wohler diagram (1/β), and contains no additional “material parameters”
to be fitted.
It is seen (30) that 0<λ<1 for all materials and stress ratios. It reduces to
the Miner law only in the trivial case (i.e., λ=1) when σ

L/H
=1 (for any β) or

β=1, which is not physical in our case. λ is also a monotonically decreasing
function of β, which means that higher fatigue resistive materials (larger

b), will show a higher sensitivity to the H-L loading
(lower λ).  This is consistent with experiments.
Another important prediction of (29) is that even
a very small amount of H cycles can reduce the
total fatigue life considerably. This will be
demonstrated by the following experimental
results.
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Two Magnesium alloys were tested:  AZ31 extruded (18mm extruded and
machined to 10mm) from ALUBIN and AM50 rolled (3mm raw thickness,
cut to 10mm width specimens) from ROTEM. S-N diagrams, shown in fig.2
for both materials were received under 6 Hz and R=0 conditions by a
standard (Instron) loading machine. β values (slope = 1/β on the S-N

logarithmic plane) were found to be around 7.1
for both alloys. The observed dispersion does not
affect the robustness of the slope. This reference
information was needed to ensure that the same
conditions (size, specimens, surface characteristics,
fixtures, loading frequency etc.) are used both
for the one level fatigue and for the H-L loading.
Two loading levels of H-L fatigue testing of
AZ31 were conducted: σ

H
/σ

L
=[0.8/0.65]σ

u
 and

[0.8/0.65]σu. The high scatter enforced testing of
many specimens, so that the H-L stress levels were
chosen for a “manageable” fatigue life in the range
5*103 to 7*104. For further confidence, another
set of AM50 specimens under σH/σL=[0.8/0.7]σu

conditions was tested. The large scatter calls for
some normalization, which will enable
accumulation of data from many materials and
conditions into one plot. This can be achieved by
writing Eq.(29) in a “Miner” form:

(32)

In this way,  a plot of all results on the normalized
plane can be done relative to a “generalized”
Miner line.  These data, collected in fig.3 for all
three cases above, show the general predictive
potential of the model,  in spite of the large
scatter.Fig. 2: S-N curves (R=0) for AM50 (rolled) and AZ31 (extruded) Mg alloys.

σu(AM50)=265MPa, σu(AZ31)=276MPa.  Linear numbering on logarithmic scales is
used for easier b calculations

Fig. 3: Comparison between model (eq.31) and three types of experiments: AZ31-
A,B are AM50
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Some additional insight is summarized in the
following.
���

The formula (29) is simple and explicit, and
therefore convenient for engineering design.
Moreover, the only material parameter involved
is β, which is the reciprocal of the slope of the
basic logarithmic S-N curve. Since no additional
testing or material constant is needed for its
immediate use, it is more a predictive tool, rather
than merely a “sophisticated curve fitting”.
���

The predictive capabilities come mainly from the
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fact that the model contains some
micromechanical information, which is difficult to
contain in a macro type model. This is the first
neighbor correlation, which basically takes into
account the fact that under external macro
stress, material elements will have different
probability of failure if their first neighbor have
failed or not.  Of course, higher order information
(i.e., dependence on two or more neighbors) can
be used, but are they necessary? For example, it
is clear that a material element near a large crack
(of many elements) will have higher probability
of failure. However, the existence of large cracks
means that the material is in a damage state very
close to total failure. Therefore, the ratio of
modeling effort to predictive benefits may be
doubtful.
�����

A recent fatigue study on human bones (Zioupos
and Casinos, 1998) helps in testing the model
predictive capability, as seen in fig.4. The high β
value (taken from a separate S-N data), causes a
significant deviation from the regular Miner law,
in spite of the very close stress levels of the two
fatigue loading parts.

Fig. 4: H-L prediction vs experiments on human bones (β=24, σ
H
/σ

L
=0.9)
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